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Abstract: This paper proposes a single image haze removal algorithm that shows a marked
improvement on the color attenuation prior-based method. Through a vast number of experiments
on a wide variety of images, it is discovered that there are problems in the color attenuation prior,
such as color distortion and background noise, which arise due to the fact that the priors do not hold
true in all circumstances. Successful resolution of these problems using the proposed algorithm shows
its superior performance to other state-of-the-art methods in terms of both subjective visual quality
and quantitative metrics, on both synthetic and natural hazy image datasets. The proposed algorithm
also is computationally friendly, due to the use of an efficient quad-decomposition algorithm for
atmospheric light estimation and a simple modified hybrid median filter for depth map refinement.

Keywords: haze removal; color attenuation prior; color distortion; background noise;
machine learning

1. Introduction

The prevalence of consumer cameras and the urgent need for groundbreaking work in surveillance
or autonomous driving systems have demanded the rapid development of image/video processing
algorithms. Among them, the task of eliminating unwanted-but-inevitable weather phenomena from
an image has drawn increasing attention in recent years. Generally, this image processing problem is
known as visibility restoration. A myriad of algorithms have been proposed to recover the visual quality
of weather-degraded images to be as similar as possible to the original ones taken under clear weather
conditions. Low-light image enhancement [1–4], rain removal [5–8], and image dehazing [9–27]
are cases in point. Haze removal ones, of all the algorithms developed for visibility restoration,
have positive impacts on both photography and computer vision applications. Not only does haze
removal function properly in hazy, foggy, or misty weather, but it also is appropriate for removing
the effect of yellow dust or dust storm on the captured image. Owing to rapid industrialization and
urbanization yellow dust is a topical issue in Eastern Asian countries [28] and there is growing demand
for a highly sophisticated visibility restoration algorithm.

Generally, haze removal algorithms are categorized according to the number of input images they
need. Due to sufficient input information, multi-image approaches [9–12] are superior to single-image
ones [13–27] in terms of performance. Given the difficulty of collecting the external information,
however, there is little interest from researchers. Accordingly, recent efforts largely have led to
single-image dehazing using two-dimensional images without any external knowledge. Such an
algorithm, nonetheless, needs to impose priors on the recovered image, for example, enhanced contrast
or less attenuated color [23]. The most popular prior is the Dark Channel Prior (DCP), proposed by
He et al. [13], which assumes that there exists a dark pixel in every color channel of the local patch
around all pixels. Shortly thereafter, the DCP has been improved in many directions [14,15]. Other
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alternative priors to DCP are the Color Attenuation Prior (CAP) [20], and a distribution of color pixels
in the RGB space [18,21]. Li et al. provided a comprehensive review of these methods [22]. A second
approach to dehazing problems is to use machine learning techniques [20,25,27]. The mapping
between a hazy image and its depth-correlated haze distribution is learned from data in this context.
Nevertheless, the lack of real datasets of hazy images and their corresponding ground truth references
imposes a limit on the performance of these methods. Yet a third way of approaching image dehazing
problems is to consider dehazing as a traditional image enhancement task [23]. The goal is to produce
a good quality dehazed image in lieu of estimating the haze distribution in this case. The means to
accomplish this consist of contrast enhancement, Retinex-based and fusion-based techniques.

The haze removal method presented in this paper is an improvement upon CAP in terms of
both computational efficiency and the dehazed image’s quality. This is achieved by examining the
existing drawbacks of CAP, and then proposing effective solutions for individual ones. The first
shortcoming of CAP lies in its data preparation stage when training the depth estimator. The synthetic
ground truth depth maps are assumed to be uniformly distributed. Since existing pseudo random
number generators cannot guarantee the uniform distribution, however, we propose the enhanced
equidistribution that has been validated in our previous work [29,30]. We also propose using a simple
low-pass filter to remove the background noise and using a simple linear weight to get rid of the color
distortion. Furthermore, the commonly observed dynamic range reduction of the dehazed image
is resolved by employing the adaptive tone remapping post-processing [31]. Finally, to lighten the
CAP’s intensive computation, the efficient quad-decomposition algorithm is utilized to estimate the
atmospheric light and the simple modified hybrid median filter (mHMF) is used to refine the depth
map. The next section provides an overview of state-of-the-art dehazing algorithms that are used
as benchmarking methods in the evaluation section. Section 3 details the solutions of the proposed
algorithm for the shortcomings of CAP. Section 4 presents quantitative and qualitative assessments,
while Section 5 concludes the paper.

2. Related Works

To restore the visibility of hazy images, most existing algorithms solve the atmospheric scattering
model, proposed by McCartney [32]:

I(x, y) = J(x, y)t(x, y) + A[1− t(x, y)], (1)

where (x, y) denotes the spatial coordinates of pixels in the hazy image I, the haze-free image J as well
as the transmission map t, and A is a constant known as atmospheric light. The first term J(x, y)t(x, y)
describes the decay of the scene radiance in the transmission medium and is called direct attenuation.
The second term A[1− t(x, y)] is called airlight and represents the additive distortion of the scene
radiance due to the scattered light. Given a hazy image I, the most popular method is to impose a
specific prior information to infer t and A. Hence, the atmospheric scattering model can be inverted to
find the solution J:

J(x, y) =
I(x, y) −A

t(x, y)
+ A (2)

2.1. Dark Channel Prior

Through extensive observations of outdoor clear images, He et al. [13] found that at least one
of three-color channels had extremely low intensity pixels in most image patches, excluding the sky
region. Conversely, the minimum intensity of such pixels is almost equal to zero. Based on this
observation, the dark channel of the haze-free image J is given by:

Jdark(x, y) = mini, j∈Ω(x,y)

{
minc∈{R,G,B}[Jc(i, j)]

}
, (3)
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where the superscript c is a color channel of J, Ω(x, y) is a local patch centered at pixel (x, y), and (i, j)
denotes the coordinates of pixels within Ω(x, y). Using this equation, we first perform a channel-wise
minimum operation to find the pixel minimum channel and then apply a minimum filter to get the
dark channel. Assuming that A is always positive, we can divide both sides of Equation (1) by A:

I(x, y)
A

=
J(x, y)t(x, y)

A
+ 1− t(x, y) (4)

To estimate the transmission map t, t is assumed to be constant in local patches [13]:
mini, j∈Ω(x,y)

{
minc∈{R,G,B}[t(i, j)]

}
= t(x, y). By applying these two minimum operators to Equation (4),

the estimated transmission map is obtained as follows:

mini, j∈Ω(x,y)

{
minc∈{R,G,B}

[
Ic(i, j)

Ac

]}
= t(x, y)mini, j∈Ω(x,y)

{
minc∈{R,G,B}

[
Jc(i, j)

Ac

]}
+ 1− t(x, y), (5)

t(x, y) ≈ 1−ω×mini, j∈Ω(x,y)

{
minc∈{R,G,B}

[
Ic(i, j)

Ac

]}
, (6)

since the assumption about the dark channel prior (Jdark
≈ 0) leads to

mini, j∈Ω(x,y)

{
minc∈{R,G,B}[Jc(i, j)/Ac]

}
≈ 0. The application-based positive constant 0 < ω ≤ 1

is added to Equation (6) to optionally keep a small amount of haze for human depth perception [13].
Transmission map estimation requires that A is known in advance. The authors first select the top 0.1
percent brightest pixels in the dark channel to estimate A. Amongst these pixels, the one with highest
intensity in the input image I is chosen as the atmospheric light A.

Since the authors assumed that t is constant in local patches, however, artifact blocks arise in
the estimated transmission map. Resolving this problem by using the computationally intensive soft
matting [33] resulted in a very slow processing speed. Furthermore, the fact that the DCP may be
found when observing a non-sky region can cause color distortion in the sky region of the dehazed
image. DCP’s drawbacks brought about a large room for improvement, and there have been several
studies to extend the DCP in various directions [14,15].

2.2. Fast Haze Removal with Median Filters

Tarel et al. [16] proposed a fast filtering-based algorithm for visibility restoration whose complexity
is a linear function of input image pixels. Using this method, the airlight marked V is estimated in lieu
of the transmission map. The authors proposed the inference that the airlight can be approximated by
a percentage of the difference between the local average and the local standard deviation of the input
pixel minimum channel W(x, y) = minc∈{R,G,B}[Ic(x, y)]. Additionally, the constraint that V must be
positive and less than W is applied to estimate the airlight [16]:

mW(x, y) = mediani, j∈Ω(x,y)[W(i, j)], (7)

stdW(x, y) = mediani, j∈Ω(x,y)

[∣∣∣W(i, j) −mW(i, j)
∣∣∣], (8)

V(x, y) = max
〈
min

{
p× [mW(x, y) − stdW(x, y)], W(x, y)

}
, 0

〉
, (9)

where mW and stdW denote the local average and local standard deviation of W respectively,
and 0 < p ≤ 1 is a constant to control the amount of haze to be removed. The nested median filtering
operation in Equation (8) is named median of median along lines [16]. Accompanying the estimated
airlight, Equation (1) can be re-written to find the haze-free image J as follows:

I(x, y) = J(x, y)
[
1−

V(x, y)
A

]
+ V(x, y), (10)
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J(x, y) =
I(x, y) −V(x, y)

1− V(x,y)
A

(11)

To recover the scene radiance of J, the atmospheric light A must be given. The authors stated that
the atmospheric light is pure white and can be set to (1, 1, 1) if the white balance in the input image is
performed correctly. Accordingly, J is computed as:

J(x, y) =
I(x, y) −V(x, y)

1−V(x, y)
. (12)

This method suffers from halo artifacts using a large median filter, however. The median filter
tends to blur the image edges with depth discontinuities. To solve this problem, Kim et al. [24]
proposed using a modified hybrid median filter in place of the standard median filter to provide better
performance at image edges when estimating the airlight. This method will be discussed in Section 2.4.

2.3. Color Attenuation Prior

The transmission map in the atmospheric scattering model is exponentially proportional to the
scene depth, and this relationship can be expressed as:

t(x, y) = e−βd(x,y) (13)

where β is the scattering coefficient of the atmosphere, and d is the scene depth. The large d results
in a small t in the distant regions. Accordingly, a decrease in the image’s saturation caused by the
multiplicative direct attenuation term J(x, y)t(x, y) and an increase in the image’s brightness caused
by the additive airlight term A[1− t(x, y)] lead to a big difference between the image’s saturation and
brightness. To contrast, the small d in the close regions results in a large t, therein lies the cause for
the small difference between the image’s saturation and brightness. Hence, Zhu et al. [20] proposed
a linear model describing the correlation between the scene depth and the difference between the
image’s saturation and brightness:

d(x, y) = θ0 + θ1v(x, y) + θ2s(x, y) + ε(x, y), (14)

where v and t are the image’s brightness value and saturation, respectively; θ0, θ1, θ2 are the model’s
constant parameters; and ε is a random variable that denotes the model’s error. The authors employed
a simple and efficient supervised learning method for the synthetic training data to learn the coefficients
θ0, θ1, and θ2.

The method for estimating the atmospheric light is similar to that of DCP. The depth calculated
using Equation (14) is filtered by a minimum filter to reduce the influence of white objects on the
accuracy of the estimation process. Then, the top 0.1 percent brightest pixels in the depth map are
chosen. Among these pixels, the one with the largest L-2 norm in the input image is selected as the
atmospheric light. Since the scene depth is blurred as the result of passing through the minimum filter,
it is refined by the guided image filter [34] before substituting into Equation (2) to get the haze-free
image J. The use of a minimum filter is beneficial to the estimation of atmospheric light, but it creates
the unfortunate byproduct of blurring the depth map; therefore, a very large guided image filter must
be used, and therein causes CAP’s high computational cost. The block diagram of CAP is depicted in
Figure 1, in which the red circle shows the minimum filter effectively reduces the influence of white
objects (e.g., a train’s headlight), whilst the pale orange circle indicates that it also blurs the depth map,
leading to the use of a very large guided image filter.
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According to our experiments, CAP works well in most cases but it still suffers some drawbacks,
such as background noise, color distortion, and intensive computation. We will delve deeply into these
drawbacks and then propose solutions for them in Section 3.

2.4. Hazy Particle Map

Using median filters in Tarel et al.’s dehazing algorithm [16] causes halo artifacts because the
standard median filtering is not appropriate for image regions containing edges. This problem can
be resolved efficiently using mHMF rather than the standard median filter (SMF), as proposed by
Kim et al. [24]. mHMF first computes the medians of three windows: cross, diagonal, and square.
Then, the median of these three is selected as the final output. Thus, in flat image regions, mHMF
functions in a similar way to SMF and smoothly estimates the hazy particle map (HPM) corresponding
to the airlight. The information from the cross and diagonal windows helps mHMF to better preserve
the image edges, however, in the abrupt regions with depth discontinuities, resulting in reduced
halo artifacts.

Additionally, a sophisticated adaptive tone remapping algorithm [31] also is used, as opposed to
the simple tone remapping method used by Tarel et al. [16]. As a result, this algorithm is a significant
improvement upon the fast haze removal using median filters, and its hardware design presented by
Ngo et al. [35] provides an efficient means of handling large images in real time. An issue arising
from the assumption that the atmospheric light is pure white (A = 1) after local white balance is that
noticeable background noise may occur in the dehazed image.

3. Proposed Algorithm

Figure 2 shows the block diagram of the proposed Improved Color Attenuation Prior (ICAP).
The abbreviations used in this figure include those for Local White Balance (LWB), Low-Pass Filter
(LPF), modified Hybrid Median Filter (mHMF), Minimum Filter (MF), Quad-Decomposition (QD),
and Atmospheric Light Estimation (ALE). The five red dotted rectangles represent the functional
blocks that distinguish the proposed algorithm from the original CAP. LPF is applied to the image’s
saturation channel to remove the background noise. Atmospheric light estimation based upon
a quad-decomposition algorithm is effective in lowering the computational complexity and, also,
leads to the use of a simple mHMF in place of a very large guided image filter to refine the
depth map. An Adaptive Constraints Calculation block strictly constrains the transmission map,
preventing the situation where image pixels become negative after dehazing and turn into black
pixels. Post-processing blocks include Adaptive Tone Remapping and color converters. They are
used to expand the dynamic range of the image after removing haze. We will delve deeply into these
differences in following sub-sections.
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3.1. New Data Preparation Method for Training Depth Estimator

The training data consisting of hazy images and their corresponding ground truth depth maps are
required to correctly learn the coefficients θ0, θ1, and θ2 in Equation (14). Unfortunately, the acquisition
of an accurate depth map is extremely difficult since there is no reliable means to obtain the scene
depth. Therefore, Zhu et al. [20] used a synthetic database to train their proposed linear model.
The training data preparation phase can be described in four steps: (i) collecting the haze-free images
from image-sharing services like Google Images or Flickr; (ii) generating random depth maps with the
standard uniform distribution on the open interval (0, 1); (iii) generating a random global atmospheric
light with its value between 0.85 and 1.0; (iv) substituting these variables into the atmospheric scattering
model to calculate the synthetic hazy images. Then, the saturation and value channels of these hazy
images are used as input data, while the random depth maps are employed as known responses in
the supervised learning strategy. Three coefficients in Equation (14) were learned by maximizing the
natural logarithm of the likelihood using the stochastic gradient ascent algorithm. Zhu et al. [20]
also provided a detailed flowchart showing mathematical expressions for both calculating the partial
gradients and updating the coefficients. Figure 3 depicts this data preparation procedure.
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Our training data is constructed according to the procedure illustrated in Figure 3 on 500 haze-free
images of 500 × 400 uniform size, in which a noticeable improvement in generating random depth
maps has been made. To solve the problem that existing pseudo random number generators cannot
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guarantee a uniform distribution, we adopted the enhanced equidistribution [29,30]. Figure 4a shows
the histogram of 200,000 random numbers, corresponding to a 500 × 400 depth map, drawn from
the standard uniform distribution on the open interval (0, 1). The numbers are distributed almost
uniformly in view, but the standard deviation of the numbers is still greater than zero. Figure 4b is
the histogram of the numbers after being modified by the enhanced equidistribution. The current
distribution is mostly uniform and is, theoretically, close to the uniform distribution. Preparing training
data for CAP’s linear model using the depth maps drawn from the enhanced equidistribution further
improves the CAP performance, proven in our previous work [29,30]. Regarding the learning strategy,
since the stochastic gradient ascent algorithm is considerably slow, we utilize the mini-batch gradient
ascent algorithm with the following hyper-parameters: the global learning rate of 1e-5; the batch
size of 3 images; and the epoch number of 1000. The best result we obtained is that θ0 = 0.180069,
θ1 = 1.014740, and θ2 = −0.734965. These parameters will be used for the evaluation in Section 4.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 21 
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3.2. Adaptive Constraints for Transmission Map

The transmission map calculated from the estimated depth map using Equation (13) is called
the raw transmission map, and it is usually not good enough for haze removal. Zhu et al. [20]
implicitly refined the raw transmission map by refining the depth map using a very large guided image
filter, and then simply constrained the transmission map between two fixed boundaries: 0.05 and
1. The small-global limit (0.05) indicates that image regions with this lower bound will be heavily
dehazed, possibly resulting in background noise or color distortion, which can be seen in Section 4.2 of
the qualitative evaluation. The depth map is not utilized in this paper to estimate the atmospheric
light, as will be discussed in Section 3.5. Hence, we can get rid of the guided image filter since the
depth map is not passed through the minimum filter. Instead, the simple mHMF can be employed
to refine the estimated depth map. Additionally, we also develop two adaptive constraints from the
atmospheric scattering model to refine the transmission map. To begin with, the transmission map can
be derived from Equation (1) as:

t(x, y) =
A− I(x, y)
A− J(x, y)

(15)

When the haze-free image J is correctly recovered, its value will lie within the range 0 to 1
(normalized value). Hence, applying the condition J ≥ 0 to Equation (15) yields:

t(x, y) ≥
A− I(x, y)

A
= 1−

I(x, y)
A

, (16)

t(x, y) ≥ maxc∈{R,G,B}

[
1−

Ic(x, y)
Ac

]
= 1−minc∈{R,G,B}

[
Ic(x, y)

Ac

]
, (17)

since the atmospheric light A is constant in the image. Equation (17) is the first adaptive constraint for
the raw transmission map.
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The second adaptive constraint is inspired by the mean and standard deviation definitions in
statistics. To simplify, haze removal is the subtraction of haze from a hazy image, where the amount
of subtraction is controlled by the values of the transmission map. The smaller these values are,
the more haze that is removed, and therein lies the cause of the dehazed image’s usually low intensities.
Pixel values within dark images are limited to zero in case they become negative after dehazing.
These pixels are called black pixels [36]. To prevent black pixels from occurring in the dehazed image,
the second constraint specifies that the image local average should be greater than or equal to the
image local standard deviation, as follows:

meani, j∈Ω(x,y)[J(i, j)] ≥ f × stdi, j∈Ω(x,y)[J(i, j)], (18)

where f is a constant to control the deviation, and the empirical choice of f = 1.0 is used for the
evaluation in Section 4. When the input image is mostly quite dark, its pixels are highly likely to
become black pixels after removing haze. The constant f , in such a case, can be set to a value greater
than 1.0 (e.g., 2.0, 2.5, or 3.0) to tighten the constraint. The image local average, as well as local standard
deviation, can be derived from Equation (2) using its linearity, as follows:

meani, j∈Ω(x,y)[J(i, j)] =
meani, j∈Ω(x,y)[I(i, j)] −A

t(x, y)
+ A, (19)

stdi, j∈Ω(x,y)[J(i, j)] =
stdi, j∈Ω(x,y)[I(i, j)]

t(x, y)
(20)

Substituting Equations (19) and (20) into Equation (18) results in the second adaptive constraint, as:

t(x, y) ≥ 1−
meani, j∈Ω(x,y)[I(i, j)] − f × stdi, j∈Ω(x,y)[I(i, j)]

A
. (21)

Combining the result with the first constraint yields the complete constraint on the transmission
map, as:

max〈1−minc∈{R,G,B}

[
Ic(x, y)

Ac

]
, 1−

meani, j∈Ω(x,y)[I(i, j)] − f × stdi, j∈Ω(x,y)[I(i, j)]

A
〉 ≤ t(x, y) ≤ 1, (22)

which is preferred over the simple constraint 0.05 ≤ t ≤ 1 used in the original CAP due to the adaptive
lower limit derived from the effort to prevent undershoots and reduce the number of black pixels.

3.3. Background Noise Removal

Background noise is a common problem for all the haze removal algorithms mentioned in Section 2.
Figure 5 illustrates the input hazy image, which is from the Image and Vision Computing (IVC) image
dataset [37], and the output dehazed images from DCP, filtering-based fast dehazing (FFD), CAP,
and HPM. The enlarged regions show background noise after removing the haze owing to various
reasons. Using DCP, it is found when observing image patches excluding the sky. Using FFD and
HPM, the assumption that the atmospheric light can be set to (1, 1, 1) causes the noise. Since the
contribution of the atmospheric light in the formation of hazy images is additive according to Equation
(1), dehazing means this kind of unwanted contribution must be subtracted. As a result, using the
maximum values of atmospheric light indicates that the subtraction is performed excessively and, thus,
highly likely gives rise to background noise.
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Conversely, the cause of CAP background noise is related to the spike-like noise in the saturation 
channel. To delve deeply into this, a thorough examination is in order. Figure 6 shows another hazy 
image from the IVC dataset, its corresponding estimated depth map, and the recovered haze-free 
image. It is evident that the background noise in the marked region is carried over into the dehazed 
image, owing to the linearity of the atmospheric scattering model. To find the cause of the 
background noise, we looked at the saturation, brightness, and depth values of line 247, as depicted 
in Figure 7a. This shows that small or spike-like noise in saturation data creates the corresponding 
noise in the depth map of the CAP linear model. This noise eventually makes the background noise 
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region: (a) input hazy image; (b) Dark Channel Prior (DCP); (c) Filtering-based Fast Dehazing (FFD);
(d) CAP; (e) Hazy Particle Map (HPM).

Conversely, the cause of CAP background noise is related to the spike-like noise in the saturation
channel. To delve deeply into this, a thorough examination is in order. Figure 6 shows another hazy
image from the IVC dataset, its corresponding estimated depth map, and the recovered haze-free
image. It is evident that the background noise in the marked region is carried over into the dehazed
image, owing to the linearity of the atmospheric scattering model. To find the cause of the background
noise, we looked at the saturation, brightness, and depth values of line 247, as depicted in Figure 7a.
This shows that small or spike-like noise in saturation data creates the corresponding noise in the
depth map of the CAP linear model. This noise eventually makes the background noise in the dehazed
image and can be removed by using a low-pass filter. Figure 7b shows that the noise in the saturation
data has been removed successfully, creating smooth depth data. Figure 8 shows the estimated depth
maps before and after applying the low-pass filter. It is evident that the background noise marked by
the red rectangle is filtered out efficiently. This feature clearly distinguishes the proposed ICAP from
the original CAP. The coefficients and one-dimensional frequency response of the low-pass filter are
illustrated in Figure 9.
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3.4. Color Distortion

Another drawback of CAP is that it does not work well in the dark image region, where both the
saturation and brightness are low. Thus, CAP misinterprets this region as the close region, resulting in
a small estimated depth value (close to zero), subsequently leading to a large transmission map value
(close to one) according to Equation (13). Figure 10 shows this.
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To determine the cause of color distortion, five pixels in the dark region of the input hazy and
dehazed images have been taken into consideration, as illustrated in Figure 11. When the scene
radiance of the haze-free image is recovered using Equation (2), the pixel values within the dark image
region marked A, B, C, D, and E will be decreased slightly or sometimes unchanged. Table 1 shows
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the blue channel has larger values, in comparison to the red and green channels. Following dehazing,
the small decrease has a negligible impact on the large blue channel, but significant impact on the
small red and green channels. Therefore, the dark regions in the dehazed image look blue, as shown in
Figure 11b.
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Table 1. Red-Green-Blue (RGB) values of dark pixels in Figure 11.

Pixel
RGB Values

Figure 11a Figure 11b

A [0.071, 0.129, 0.255] [0.044, 0.096, 0.220]
B [0.094, 0.133, 0.247] [0.057, 0.091, 0.196]
C [0.122, 0.157, 0.247] [0.077, 0.105, 0.184]
D [0.055, 0.114, 0.220] [0.045, 0.101, 0.204]
E [0.067, 0.118, 0.235] [0.052, 0.099, 0.235]

Regarding this kind of color distortion, one solution is to add a weight factor to make the color in
the dark image region consistent, that is, going darker after removing haze. Adding to that, the weight
factor is set in linear form to lighten the computational complexity of the proposed algorithm. Hence,
we propose an adaptive weight factor wt depicted in Figure 12, where w0 denotes the starting value of
wt, and d0 represents the depth value that specifies the close region. We have found empirically that
the values of w0 = 0.9 and d0 = 0.1 are effective in providing visually-pleasing results for almost all
images tested for the proposed algorithm. The formula of wt and the revised formula for recovering
scene radiance are as follows:

wt(x, y) =
(

1−w0

d0

)
d(x, y) + w0, (23)

J(x, y) =
I(x, y) −A[1−wt(x, y)t(x, y)]

t(x, y)
(24)
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Figure 13 shows dehazed images before and after applying the proposed weight factor wt.
The difference is noticeable, since adding wt forces the color of the dark region to go darker, which is
the desired effect according to the atmospheric scattering model. This is another obvious distinction
between the proposed ICAP and the original CAP.
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3.5. Atmospheric Light Estimation

Methods for estimating the atmospheric light in recent haze removal algorithms usually suffer
from one of two major issues: high cost in terms of computational complexity, and incorrectly taking
pixels belonging to white objects into consideration. DCP’s or CAP’s atmospheric light estimation
suffers from the former, and even the latter in specific cases, for example. This is because finding the
pixel in the hazy image that corresponds to the brightest pixel amongst a percentage of pixels within
a transmission map or depth map requires sorting all pixels and then searching over the selected
ones. Additionally, if the percentage is not chosen carefully, image pixels within white objects may be
included mistakenly in the estimation process. Using FFD’s atmospheric light estimation approach,
setting A. to (1, 1, 1) after white balance absolutely does not work for images containing white objects
therein. Thus, we have decided to use the quad-decomposition algorithm [19], which has been proven
to be an efficient and fast estimation method.

This algorithm operates on the image’s luminance channel which, to prevent the unwanted
influence of white objects, must be processed by a minimum filter in advance. Then, it iteratively
divides the image’s luminance into quarters and selects a quarter with the largest average luminance,
until the quarter’s size is less than a predetermined value. Using the finally selected quarter, a pixel
with minimum Euclidean distance to (1, 1, 1) coordinate in the RGB space is chosen as the atmospheric
light. Figure 14a shows an image in the IVC dataset where CAP fails to estimate the atmospheric light
correctly. The red pixels are those corresponding to 0.1 % of the farthest pixels in the depth map, and
the chosen one is the pixel in the train’s front light. Furthermore, CAP needs to search through the
entire spatial area of an image to find these pixels. To contrast, since the train’s front light cannot
dominate the average brightness in the image quarters, quad-decomposition does not take it into
consideration. Simultaneously, the search area also is reduced iteratively by a factor of four for accurate
estimation. The red dot in Figure 14b refers to a pixel being chosen as the atmospheric light, but it is
enlarged for visual convenience.
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3.6. Adaptive Tone Remapping

The dehazing algorithm often results in a low-dynamic range image, owing to the fact that
computations can produce results out of the normalized range from 0 to 1. Tarel et al. [16] employed a
simple tone mapping that solely operates on the luminance channel to resolve this problem. We make
use of an efficient adaptive tone remapping method, proposed by Cho et al. [31], in this work. Not only
is the luminance enhanced, the color also is emphasized, according to the ratio of the enhanced
luminance to the original luminance.

EL(x, y) = L(x, y) + GL(x, y)WL(x, y), (25)

EC(x, y) = C(x, y) + GC(x, y)WC(x, y) + 0.5, (26)

where EL denotes the enhanced luminance, L the input luminance, GL the luminance gain, WL the
adaptive luminance weight, EC the emphasized color, C the input color, GC the color gain, and WC the
adaptive color weight. Cho et al., [31] adopted an adaptive limit point, which is calculated according
to the cumulative distribution function of the input luminance, to formulate the luminance gain GL as
a nonlinear power function. The adaptive luminance weight WL is a simple linear function where the
input luminance is the independent variable and WL itself is the dependent variable. The color gain
GC is defined as the multiplication of the input color and the ratio between the enhanced luminance
and the input luminance. The adaptive color weight WC is the piecewise linear function consisting
of three line segments, in which the first and the third lines are two thresholds. Readers can refer to
Choe et al., [31] for a more detailed description and computational formulae.

4. Evaluations

This section provides the comparative evaluation of the proposed ICAP and several state-of-the-art
haze removal algorithms, including DCP, CAP, FFD, and HPM, both in terms of quantitative and
qualitative assessments.

4.1. Quantitative Evaluation

4.1.1. Metrics

The selection of evaluation metrics depends upon the collection of test images. To carry out an
extensive evaluation, we employ both synthetic [36,38] and real hazy images [37,39,40]. The following
sub-sections present details about the evaluation of these sets of images.
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4.1.2. Synthetic Datasets

Foggy Road Image DAtabase 2 (FRIDA2) [36] and D-HAZY [38] are two synthetic datasets that
contain pairs of ground truth reference images and hazy images of the same scene. There are 264
synthetic hazy images of 66 road scenes in the FRIDA2 dataset and they are generated completely
by computer graphics. Each road scene comprises a ground truth reference and four associated
hazy images corresponding to four different kinds of haze: homogeneous, heterogeneous, cloudy
homogeneous, and cloudy heterogeneous. This dataset is designed for Advanced Driver Assistance
Systems (ADAS) [38]. Since FRIDA2 solely contains computer graphic generated scenes, it may not
be valid for real scenarios. Accordingly, an additional D-HAZY dataset consisting of real ground
truth reference images and synthesized hazy ones has come into use. It contains over 1400 images
of real scenes and their corresponding depth maps captured by a Microsoft Kinect camera. Then,
the atmospheric scattering model is used with the assumptions that the atmospheric light and haze
density are both uniform to synthesize hazy images.

As these datasets have ground truth reference images, Structural SIMilarity (SSIM) [41],
Tone-Mapped image Quality Index (TMQI) [42], and Feature SIMilarity extended to color image
(FSIMc) [43] are employed in an evaluation. Additionally, Fog Aware Density Evaluator (FADE) [44],
a learned metric predicting the haze density in a scene, also is used to assess the visibility of the scene
after removing haze. The smaller FADE is, in this context, the larger the amount of haze that has
been removed.

It is supposed that X and Y are two nonnegative image luminance signals. The SSIM measure of
two images is calculated as follows:

SSIM(X, Y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) , (27)

where (µx, µy) and (σx, σy) are the local average and standard deviation of X, Y, respectively; C1 and C2

are constants for avoiding the instability when (µ2
x + µ2

y) and (σ2
x + σ2

y) are very close to zero; and σxy is
the correlation coefficient between (X−µx) and (Y−µy). The value of SSIM ranges from 0 to 1, in which
higher SSIM means two images are more structurally similar.

Moreover, Equation (28) gives the formula of TMQI, where X and Y now denote two color images.
S(X, Y) is the statistical naturalness measure, N(X, Y) is the overall structural fidelity score, 0 ≤ a ≤ 1
is used to adjust the relative importance of these two components, and α and β determine their
sensitivities. Even though X and Y are two color images, TMQI only evaluates their grayscale channel
to assess the structural information preserving characteristics. TMQI takes on values within the range
[0, 1], in which the higher, the better:

TMQI(X, Y) = a× S(X, Y)α + (1− a) ×N(X, Y)β (28)

FSIMc is developed based on the observation that a human visual system perceives an image
mainly according to its low-level features, such as the phase congruency, the image gradient magnitude,
and the chrominance similarity. FSIMc is calculated by:

FSIMc(X, Y) =
∑

i∈Ω SL(i)SC(i)
λPCm(i)∑

i∈Ω PCm(i)
, (29)

where SL(i) denotes the combined similarity measure of the phase congruency and the gradient
magnitude similarities between two images, SC(i) the chrominance similarity measure, PCm(i) the
coefficient weighting the importance of SL(i) in the overall similarity between X and Y, and λ is a
positive constant for adjusting the importance of the chrominance component. Looking at Equation
(29), Ω means the whole image domain. Since both SSIM and TMQI are designed to evaluate grayscale
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images only, an additional FSIMc is used to conduct a thorough assessment. Similarly, FSIMc lies
between 0 and 1, where the higher FSIMc means that the compared image resembles the reference
image to a greater degree.

FADE is a referenceless evaluation metric based on natural scene statistics (NSS), fog aware
statistical features (FASFs), and Mahalanobis distance. The feature domain is defined based on a total
of twelve features, including NSS and FASFs [44]. Choi et al. [44] first collected 500 hazy images
and another 500 haze-free images. The features extracted from these two image groups were then
individually fitted to the multivariate Gaussian (MVG) model to calculate their corresponding mean
vector (µf, µff) and covariance matrix (Σf, Σff), respectively. To access the perceptual haze density of
a particular input image, its extracted features also are fit to MVG model. The mean vector (µi) and
covariance matrix (Σi) are then employed to calculate the Mahalanobis distances from input image to
hazy image group (D f ) and haze-free image group (D f f ), as shown in Equations (30) and (31). Finally,
FADE is calculated as the ratio in Equation (32) and then has positive values, where the smaller is
the better.

D f =

√(
µi − µf

)T
(

Σi + Σf

2

)−1(
µi − µf

)
, (30)

D f f =

√(
µi − µff

)T
(

Σi + Σff

2

)−1(
µi − µff

)
, (31)

FADE =
D f

D f f + 1
(32)

Tables 2 and 3 display the average SSIM, TMQI, FSIMc, and FADE results on the FRIDA2 and
D-HAZY datasets, respectively. The best result is marked with bold. Since the luminance information
contributes toward the calculation of SSIM, TMQI, and FSIMc, the noticeable background noise of HPM
and the halo artifacts of FFD increase these quantitative scores to a certain extent. Thus, they exhibit
fairly good performance in terms of SSIM, TMQI, and FSIMc, but not FADE. Alternately, CAP possesses
the best FADE score and high TMQI and FSIMc. This is because CAP often excessively removes haze
from hazy images, bringing about better colorfulness restoration. Removing too much haze also causes
loss of image details, however, resulting in CAP’s low SSIM. Regarding DCP, as FRIDA2 dataset
contains images of a road scene with sky regions, DCP shows poor performance. The proposed ICAP
is the best performing method under the SSIM, TMQI, and FSIMc metrics and the second-best method
in terms of FADE. It is attributed to the adaptive constraints on the lower limit of a transmission map,
which avoids the excessive haze removal that occurs in CAP. According to Table 3, however, ICAP is
only the third best under the SSIM and FSIMc metrics, and the best under the FADE metric. This is
because D-HAZY is a kind of biased dataset that solely consists of indoor images, while our proposed
ICAP has been tuned to gain best performance in both outdoor and indoor scenes. The fact that DCP
performs best on the D-HAZY dataset shows that DCP is a fine prior for indoor dehazing, and our
experiment results are consistent with those presented by Ancuti et al. [38].
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Table 2. Average Structural Similarity (SSIM), Tone-Mapped image Quality Index (TMQI), Feature
Similarity extended to color image (FSIMc), and Fog Aware Density Evaluator (FADE) results on Foggy
Road Image Database 2 (FRIDA2) dataset.

Method Haze Type SSIM TMQI FSIMc FADE

DCP

Homogeneous 0.6653 0.7639 0.8168 1.0177
Heterogeneous 0.5374 0.6894 0.7251 1.2793

Cloudy homogeneous 0.5349 0.6849 0.7222 1.2587
Cloudy heterogeneous 0.6500 0.7781 0.8343 1.0792

Overall average 0.5969 0.7291 0.7746 1.1587

FFD

Homogeneous 0.7096 0.7259 0.7833 0.9307
Heterogeneous 0.6970 0.7310 0.7725 1.4961

Cloudy homogeneous 0.6719 0.7312 0.7567 1.3583
Cloudy heterogeneous 0.7431 0.7373 0.8104 1.1021

Overall average 0.7054 0.7314 0.7807 1.2218

CAP

Homogeneous 0.5651 0.7533 0.7947 0.5527
Heterogeneous 0.5519 0.7254 0.7845 0.9599

Cloudy homogeneous 0.5310 0.7080 0.7764 0.8267
Cloudy heterogeneous 0.5412 0.7674 0.8117 0.6752

Overall average 0.5473 0.7385 0.7918 0.7536

HPM

Homogeneous 0.5949 0.7320 0.8048 0.9675
Heterogeneous 0.6245 0.7037 0.7805 1.6836

Cloudy homogeneous 0.6124 0.7015 0.7751 1.5741
Cloudy heterogeneous 0.6078 0.7343 0.8135 1.0774

Overall average 0.6099 0.7179 0.7935 1.3256

ICAP

Homogeneous 0.7022 0.7475 0.8013 0.7825
Heterogeneous 0.7089 0.7318 0.7919 1.1610

Cloudy homogeneous 0.6918 0.7268 0.7854 1.0711
Cloudy heterogeneous 0.7253 0.7539 0.8152 0.8895

Overall average 0.7070 0.7400 0.7984 0.9761

Table 3. Average SSIM, TMQI, FSIMc, and FADE results on the D-HAZY dataset.

Method SSIM TMQI FSIMc FADE

DCP 0.8348 0.8631 0.9002 0.7422
FFD 0.7475 0.8000 0.8703 0.9504
CAP 0.7984 0.8206 0.8880 0.9745
HPM 0.7520 0.8702 0.8590 0.8556
ICAP 0.7691 0.8165 0.8787 0.7420

4.1.3. Real Datasets

The IVC [37], O-HAZE [39], and I-HAZE [40] image datasets are used in this section to assess the
dehazing performance on hazy images of the real scene. The IVC dataset contains 25 hazy images of
people, animals, landscape, indoor, and outdoor real images and does not contain their corresponding
ground-truth haze-free images. Conversely, the O-HAZE dataset consists of 45 pairs of hazy and
haze-free images of outdoor scenes, and the I-HAZE dataset comprises 30 pairs of hazy and haze-free
images of indoor scenes. The haze in the hazy scenes of O-HAZE and I-HAZE datasets is created by
the vapor generator.

Due to the lack of reference images in the IVC dataset, the rate of new visible edges (e), the quality
of the contrast restoration (r), proposed by Hautiere et al. [45], and FADE are used to evaluate the
performance of dehazing approaches. Since O-HAZE and I-HAZE possess reference images, SSIM,



Appl. Sci. 2019, 9, 4011 17 of 22

TMQI, FSIMc, and FADE are used as in the preceding section. The values of e and r are determined by
the following equations:

e =
nr − no

no
, (33)

r = exp

 1
nr

∑
i∈Ψ

log(ri)

, (34)

where nr and no denote the numbers of the set of visible edges in the restored image and the original
image, respectively. Thus, e assesses the ability of an algorithm to restore edges that are visible in
the restored image, but are not in the original one [45]. Using Equation (34), Ψ denotes the set of
visible edges in the restored image, and ri is the ratio determining the improvement of visibility level.
Therefore, higher values of e and r are desired in an image processing task.

Tables 4–6 show the average evaluation metric results on the IVC, O-HAZE, and I-HAZE datasets.
Similarly, the best results are shown in bold. The values of e and r are directly proportional to the
number of newly restored edges in the dehazed image. Hautiere et al. [45], however, stated that any
set of edges which have a local contrast above 5% are assumed to be the visible edges. Accordingly,
in methods susceptible to the background noise, like FFD and HPM, it appears that noises may be
misinterpreted and then adversely affect the accuracy of e and r. Hence, even though ICAP has lower e
and r results than FFD and HPM, it may still be the best performing method when considering the
background noise resistant characteristics. This can be observed in the qualitative evaluation in the
next section. Using the O-HAZE dataset, our proposed ICAP is the best method in terms of TMQI
and FADE, and the second best under SSIM and FSIMc metrics. The dehazing performance is even
more impressive on the I-HAZE dataset, where the proposed ICAP exhibits the best dehazing power
under SSIM, TMQI, and FSIMc metrics. The clear superiority of ICAP over CAP is attributed to all the
improvements presented in Section 3. The adaptive linear weight for handling color distortion makes
ICAP outperform CAP in dark areas, resulting in smaller FADE, except for in the I-HAZE dataset,
where FADE = 0.8053 may be too low, causing loss of image details. This, coupled with the adaptive
constraints on the transmission map and the background noise reduction, leads to the higher TMQI
and FSIMc. Adding to that, the adaptive tone remapping post-processing also contributes toward the
high scores of TMQI and FSIMc.

Table 4. Average rate of new visible edges (e), quality of contrast restoration (r), and FADE results on
the Image and Vision Computing (IVC) dataset.

Method e r FADE

DCP 0.39 1.57 0.56
FFD 1.30 2.15 0.53
CAP 0.78 1.17 0.83
HPM 1.27 2.07 0.73
ICAP 1.11 2.03 0.50

Table 5. Average SSIM, TMQI, FSIMc, and FADE results on the O-HAZE dataset.

Method SSIM TMQI FSIMc FADE

DCP 0.7709 0.8403 0.8423 0.3719
FFD 0.7263 0.8416 0.7733 0.4013
CAP 0.6647 0.8118 0.7738 0.6531
HPM 0.4702 0.6509 0.6869 1.1445
ICAP 0.7322 0.8935 0.8219 0.3647
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Table 6. Average SSIM, TMQI, FSIMc, and FADE results on the I-HAZE dataset.

Method SSIM TMQI FSIMc FADE

DCP 0.6580 0.7319 0.8208 0.8328
FFD 0.7200 0.7740 0.8055 0.8053
CAP 0.6864 0.7512 0.8252 1.0532
HPM 0.6424 0.7026 0.7879 1.7480
ICAP 0.7600 0.7892 0.8482 1.1277

4.2. Qualitative Evaluation

Figure 15 presents a hazy scene of landscape, to visually assess the dehazing performance of the
proposed ICAP and other benchmarking methods. It is evident that, in this case, the methods with
higher haze-removal ability are the DCP and ICAP. Considering the red cropped regions, it is observed
that color distortion occurs in FFD, CAP, and HPM, while DCP and ICAP produce results that are
consistent with the atmospheric scattering model. The green cropped regions, however, show that
only the proposed ICAP has the ability to correctly remove haze in the sky region. DCP, due to its
well-known drawback in handling the sky region, introduces an unrealistic color shift, turning the sky
to yellow. The same problem also can be seen in FFD, CAP, and HPM, in which HPM also produces
additional background noise.
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chart regions reveal that CAP and HPM exhibit lower dehazing power than the other three methods, 
since, not only do they suffer from color distortion, they also lose the details of the grass. Alternately, 
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Figure 15. Qualitative assessment of different algorithms on a real hazy scene of landscape: (a) hazy
image, dehazed images and corresponding zoomed-up regions of (b) DCP, (c) FFD, (d) CAP, (e) HPM,
and (f), the proposed ICAP.

Figure 16 shows an image of a hazy outdoor scene as a second example. Since this image mainly
contains non-sky regions, DCP and ICAP share the top dehazing performance. The zoomed-up color
chart regions reveal that CAP and HPM exhibit lower dehazing power than the other three methods,
since, not only do they suffer from color distortion, they also lose the details of the grass. Alternately,
the FFD method produces a visually acceptable result, but it still has halo artifacts at the small edges of
grass and color distortion, which can be seen in the first element of the first and third rows of the color
chart. Regarding the green zoomed-up regions, even though FFD exhibits the best performance in
restoring details, the unwanted halo artifacts in other regions lower its dehazing power in general.
DCP also performs well in this region, but it tends to darken the image by removing too much haze,
which may fade the details in dark regions. Thus, the proposed ICAP, which produces visually
satisfactory results, can be considered as a high-performance method in haze removal. Figure 17
illustrates other examples of the real hazy scene, to demonstrate the dehazing capability of ICAP and
other methods.
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4.3. Computational Complexity Comparison

Table 7 summarizes the computational complexity based on the CPU times using the
above-mentioned algorithms. The best results are marked bold. They were all programmed via
MATLAB R2019a and tested on a Core i7-6700 CPU (3.4 GHz) with 32GB RAM. It is evident that for
any image sizes ranging from 320 × 240 to 4096 × 2160, the proposed ICAP always possesses the fastest
processing speed. DCP exhibits the poorest performance, due largely to the computationally intensive
soft-matting. The processing time of DCP for a 4096 × 2160 image could not be even measured to due
insufficient RAM. FFD is better than DCP in terms of processing speed, since filtering techniques are
exploited in place of soft-matting. HPM is about twice as fast as FFD. Conversely, CAP is only faster
than the slowest DCP in this comparison because it uses a very large guided image filter continuously
after a large minimum filter. The proposed ICAP reduces the processing time of CAP by more than
six times. The advantage of processing speed is attributed to the clever use of a quad-decomposition
algorithm, mHMF, simple low-pass filter, and linear form of adaptive weight.
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Table 7. Processing time in seconds of Dark Channel Prior (DCP), Filtering-based Fast Dehazing (FFD),
Color Attenuation Prior (CAP), Hazy Particle Map (HPM), and Improved Color Attenuation Prior
(ICAP).

Image Size DCP FFD CAP HPM ICAP

320 × 240 4.85 0.25 0.57 0.10 0.09
640 × 480 18.32 0.84 2.31 0.38 0.33
800 × 600 27.98 1.81 3.82 0.68 0.64

1024 × 768 45.76 2.29 6.37 0.99 0.90
1920 × 1080 130.55 4.46 16.31 2.24 2.01
4096 × 2160 – 27.44 69.54 11.06 10.82

5. Conclusions

An improvement upon the Color Attenuation Prior-based dehazing method, termed ICAP,
has been developed. By carefully examining the advantages and disadvantages of CAP, as well as
other state-of-the-art haze removal algorithms, ICAP is proposed to overcome some of the existing
limitations. First of all, owing to the lack of datasets containing pairs of hazy and haze-free images
of real scenes, synthetic datasets were used to train the depth estimator. We, therefore, proposed the
enhanced equidistribution, in lieu of the standard uniform distribution, to create the synthetic training
dataset. This was validated in our previous work [29,30], revealing that the new synthetic training
dataset brings about a significant improvement in dehazing performance. Additionally, to reduce
the computational complexity of the proposed algorithm, the fast and efficient quad-decomposition
algorithm that operates on the luminance channel was utilized for atmospheric light estimation. As a
result, the simple mHMF can be used to refine the depth map, instead of a very large guided image
filter. Furthermore, the background noise issue that arose in the CAP was successfully traced to the
noise in the saturation channel, which was filtered easily by a low-pass filter. Finally, the well-known
color distortion existing in many contemporary haze removal methods also was resolved, by using the
adaptive linear weight.

ICAP exhibits good performance in comparison to other benchmarking methods for the task of
visibility restoration. This has been verified through extensive experiments on both synthetic and
real datasets. The quantitative results show that there is large room for improvement in the haze
removal algorithm.
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