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Abstract: Haze is a term that is widely used in image processing to refer to natural and human-
activity-emitted aerosols. It causes light scattering and absorption, which reduce the visibility of
captured images. This reduction hinders the proper operation of many photographic and computer-
vision applications, such as object recognition/localization. Accordingly, haze removal, which is
also known as image dehazing or defogging, is an apposite solution. However, existing dehazing
algorithms unconditionally remove haze, even when haze occurs occasionally. Therefore, an approach
for haze density estimation is highly demanded. This paper then proposes a model that is known
as the haziness degree evaluator to predict haze density from a single image without reference to
a corresponding haze-free image, an existing georeferenced digital terrain model, or training on a
significant amount of data. The proposed model quantifies haze density by optimizing an objective
function comprising three haze-relevant features that result from correlation and computation
analysis. This objective function is formulated to maximize the image’s saturation, brightness, and
sharpness while minimizing the dark channel. Additionally, this study describes three applications
of the proposed model in hazy/haze-free image classification, dehazing performance assessment,
and single image dehazing. Extensive experiments on both real and synthetic datasets demonstrate
its efficacy in these applications.

Keywords: haziness degree; haze density; haze-relevant feature; correlation analysis; analytical
optimization

1. Introduction

Machine vision algorithms for high-level automatic visual recognition tasks in real-
world systems appear to be unsuitable in adverse weather conditions owing to the absorp-
tion and scattering of incoming light waves. For example, a turbid atmosphere significantly
reduces the visibility of captured scenes, posing severe problems for surveillance cameras
or autonomous driving vehicles, and possibly causing undesired consequences. Haze
removal algorithms have been used because revisiting deployed algorithms to consider
the detrimental effects of the elements is seemingly impractical. In this context, image de-
hazing methods preprocess an input image/video stream to restore the scene radiance for
subsequent algorithms. Nevertheless, because haze occurs occasionally, the unconditional
removal of haze may become unfavorable when the input image is clear. Consequently,
haze density estimation has attracted considerable interest from researchers over the
past decade.

One of the first efforts to predict the hazy image’s visibility is to exploit multiple images
that are captured under different weather conditions [1] or different polarization degrees [2].
However, these early models have been facing practical difficulties in obtaining sufficient
images and configuring experimental equipment. Therefore, Hautiere et al. [3] proposed
an automatic method for detecting the presence of haze and estimating the visibility
distance using side geographical information that was obtained from an onboard camera.
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Although this method eliminates the requirement for multiple images, in practice it remains
difficult to deploy. The main reason is the tradeoff between accuracy and algorithmic
complexity. Creating an accurate three-dimensional model is a non-trivial task that is
inappropriate for visibility estimation, which is supposed to be computationally efficient
and compact. Conversely, using an approximated model similar to that proposed by
Hautiere et al. [3] significantly affects the accuracy. Furthermore, this method is inapplicable
to general hazy scenes because it is based on certain assumptions, for example, those
regarding moving vehicles. Subsequently, Kopf et al. [4] presented a deep photography
system to enhance the visibility of hazy images. Nevertheless, their method requires an
existing georeferenced digital terrain and urban models to function correctly.

A more appealing approach is to exploit only a single hazy image; this method appears
challenging, but it is highly promising for real-world applications. In this context, most
dehazing algorithms utilize prior information regarding the scene radiance to compensate
for the lack of external knowledge. Tan [5] assumed that the scene radiance had higher
local contrast than the observed intensity. This assumption is suitable for estimating the
scene albedo by maximizing the local contrast while assuming a smooth airlight; however,
the recovered scene radiance tends to be overly saturated, which results in halo artifacts.
He et al. [6] presented a pioneering study regarding the dark channel prior, which states
that outdoor non-sky images possess extremely dark pixels in at least one color channel
around local patches. Consequently, the dark channel prior can effectively estimate the
raw transmission map, which inversely quantifies the haze density. He et al. [6] initially
utilized soft matting to refine the raw transmission map and later sped up the refinement
using a guided filter [7]. In contrast, Tarel and Hautiere [8] proposed a fast solution using
an edge-preserving median of the median along a line filter. Although the algorithmic
complexity is only a linear function of the pixel number, halo artifacts also affect the results.
Kim et al. [9] developed a more sophisticated filtering technique, known as the modified
hybrid median filter, to reduce the halo artifacts. Recently, Berman et al. [10] introduced the
non-local haze-line prior, which postulates that a few tight clusters in the Red-Green-Blue
(RGB) color space approximate to the haze-free image’s real color. However, a tradeoff
between the restoration quality and run-time hinders the broad application of this prior.

Raikwar and Tapaswi [11] rearranged the atmospheric scattering model to estimate
the transmission map based on the difference of minimum color channels in order to further
improve visibility restoration. They adopted a bounding function to model this difference
and exploited the regression technique to estimate the bounding function. Jiang et al. [12]
proposed predicting the optical depth as a polynomial combination of haze-relevant fea-
tures, in which sensitivity and error analyses were applied to reduce the model complexity.
These two methods utilize synthetic datasets for estimation; hence, the domain shift prob-
lem may affect them when applied to real-world images. Wu et al. [13] formulated visibility
restoration as a variational model for jointly achieving noise diminution and accuracy
improvement. However, this method is computationally expensive and it may be affected
by heterogeneous lighting conditions. Therefore, more efficient denoising methods [14,15]
can be considered for reducing the computational complexity. Tang et al. [16] utilized
another machine learning technique, which is known as random forest regression, to esti-
mate the transmission map from a set of haze-relevant features. Similarly, Ngo et al. [17]
optimized an objective function quantifying four haze-relevant features, including contrast
energy, image entropy, local standard deviation, and normalized dispersion, to estimate
the transmission map. Even though the restored visibility is impressive, the high computa-
tional cost precludes the broad application of these methods. Schechner and Averbuch [18]
adopted adaptive regularization to develop a filtering approach for visibility restoration,
but background noise affected the result in the distant region. Recently, Wu et al. [19]
investigated the side effects of noise on visibility estimation. Subsequently, they pro-
posed utilizing the interleaved cascade of shrinkage fields for noise diminution in the
joint recovery of the scene radiance and transmission map. However, this method is also
computationally expensive.
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Furthermore, deep neural networks can be exploited to predict the haze density and
scene radiance. Cai et al. [20] presented the first attempt to estimate the transmission map
from a single image while using a three-layer convolutional neural network known as
DehazeNet. The first layer extracts haze-relevant features, while the second layer processes
these features at different scales to achieve spatial invariance. The last layer combines the
results in a nonlinear manner to estimate the transmission map. However, DehazeNet does
not demonstrate impressive performance because of its shallow architecture and simple
learning strategy. Being inspired by DehazeNet, Li et al. [21] developed a lightweight all-
in-one dehazing network (AOD-Net) for estimating the transmission map and atmospheric
light in a unified manner. This type of estimation allows for the two latent variables to refine
each other, consequently reducing the reconstruction error. Zhang and Tao [22] leveraged
the compact architecture of the AOD-Net and the multiscale image fusion to design the
FAMED-Net. This sophisticated network undoubtedly outperforms the AOD-Net in the
visibility restoration task. It is also noteworthy that the AOD-Net and FAMED-Net can
attain real-time processing when running on graphics processing unit platforms, which
opens up a promising dimension toward deploying deep neural networks on edge devices.
Huang et al. [23] devised a dual architecture comprising restoration and detection networks
for the joint learning of three tasks: visibility enhancement, object classification, and object
localization. However, this dual network is costly in terms of computational resources.
Recent studies leveraged efficient encoder—decoder frameworks and more sophisticated
loss functions to improve the estimation accuracy. Li et al. [24] exploited the encoder–
decoder framework to develop a task-oriented network for haze removal, a refinement
network for haze residual compensation, and a fusion network for fusing the previous
two networks’ results. They also employed a loss function consisting of the mean absolute
error, total variation, and dual composition losses.

The generative adversarial network (GAN), which is one of the most interesting
technologies in computer science, can also be used to predict the scene radiance in hazy
weather. Li et al. [25] presented a conditional GAN to mitigate unstable learning processes
in GANs. Meanwhile, Pan et al. [26] developed a physics-based GAN to solve various
ill-posed image restoration problems. Nevertheless, all of the deep-learning-based models
share a common lack of complete and reliable training datasets for two main reasons: the
sheer impracticality of capturing the same scene under different weather conditions and the
unreliable performance of current depth cameras. Consequently, researchers have hitherto
utilized synthetic datasets, in which hazy images or depth maps are synthesized from
collected haze-free images or random distributions, respectively. This deficiency gives rise
to the domain shift problem. Ignatov et al. [27] pioneered an effort to address this problem
by loosening the strict requirement for paired datasets of supervised learning. In this
context, they utilized two GANs that corresponded to forward and inverse mappings. The
results generated by the forward GAN are converted back to the input domain by the
inverse GAN, and the content consistency loss is exploited to ensure that the re-generated
results exhibit similar characteristics as input images. Additionally, the forward GAN’s
results are discriminated from the true data distribution on the basis of color and textual
information. This innovative work enables network training using an unpaired dataset.

Previously, image fusion is a viable alternative for restoring the scene visibility in poor
weather. This scheme yields a single image from several images, which can be generated
from a sole input or captured from different cameras. Image dehazing in this manner offers
considerable advantages, for example, few patch-based artifacts and a fast processing
time. These benefits are attributable to the pixel-wise operation and the elimination of
transmission map estimation. Ancuti et al. [28] exploited multiscale fusion for day and
night-time single-image dehazing. The airlight is estimated in a patch-based manner using
two different patch sizes because of the difference in the lighting conditions between the
day and night-time scenes. Subsequently, two corresponding dehazed results, coupled
with the discrete Laplacian of the original image, are fused to obtain the final result.
The corresponding weight maps are derived from three essential features: image contrast,
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saturation, and saliency. Despite the satisfactory dehazing performance, up and down-
sampling operations in the multiscale fusion hinder its broad application. Ngo et al. [29]
recently demonstrated the insignificant performance gap between single and multiscale
fusions, which favors the hardware implementation for real-time processing. It is also
worth noting that Choi et al. [30] proposed an efficient method for haze density estimation,
which is known as the fog aware density evaluator (FADE). The FADE predicts the haze
density by exploiting the measurable deviations from the statistical regularities that were
observed in real hazy and haze-free images. However, this metric is not in a normalized
range, thereby resulting in difficulties in evaluating the haze density in general. Based on
the comprehensive investigation when developing the FADE, Choi et al. [30] also devised
a multiscale dehazing method, but it is computationally expensive.

Among all of the aforementioned methods, none of them are seemingly capable of re-
moving haze judiciously. In this context, dehazing algorithms invariably attempt to remove
haze from the input image, regardless of whether it is hazy or haze-free. Although re-
searchers widely use the term "haze-free” to refer to clean images, it is noteworthy that
these images are not completely free of haze. In practice, the atmosphere does contain
microscopic aerosols, even in the clear weather, which gives rise to the inevitable existence
of distant haze. However, this phenomenon is important for the human visual system to
perceive depth information. Therefore, the absolute removal of haze may result in unnatu-
ral images, which may cause observers to lose the feeling of depth. This issue demands
a visibility assessment tool quantifying the image’s haze density, which helps to classify
hazy and haze-free images, and correspondingly perform image dehazing. In general,
human subjective assessments are the most accurate method, despite being burdensome
and non-repeatable. Accordingly, objective image quality assessment (IQA) algorithms are
a possible alternative. Nevertheless, most of the existing IQA metrics require ground-truth
references to assess visibility distortions; hence, they are inappropriate for the demanded
task. In contrast, the FADE and optical depth prediction proposed by Jiang et al. [12] have
been applied to visibility assessment from a single image; thus, they are used as benchmark
methods in this study.

This study proposes a knowledge-driven approach for predicting haze density from a
single image. It first explores several haze-relevant features and then selects three compu-
tationally efficient features based on a correlation and computation analysis. With these
features, this study formulates an objective function for maximizing the scene radiance’s
saturation, brightness, and sharpness while minimizing the dark channel. Afterwards, this
study exploits analytical optimization to derive a closed-form expression of the proposed
haziness degree evaluator (HDE). Additionally, it discusses three applications of HDE in
hazy/haze-free image classification, dehazing performance assessment, and single image
dehazing. Notably, the experimental results on hazy/haze-free image classification demon-
strate that the proposed HDE is superior to the two aforementioned benchmark methods.
The three main contributions of this study are as follows:

• This study presents a simple correlation and computation analysis to select image
features that are haze-relevant and computationally efficient.

• With the selected features, this study formulates an analytically solvable objective
function that simultaneously maximizes the scene radiance’s saturation, brightness,
and sharpness, and minimizes the dark channel, which yields a closed-form formula
for quantifying haze density from a single image.

• This study demonstrates that applying the proposed HDE to a particular task of
hazy/haze-free image classification results in an accuracy of approximately 96%,
which surpasses those of two benchmark metrics and human observers.

2. Preliminaries
2.1. Hazy Image Formation

The formation of hazy images in the atmosphere is a highly complex process involving
several factors, such as diversity, orientation, and distribution of atmospheric turbidity [31].
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Hence, the simplified Koschmieder model is widely used to describe the optical hazy image
formation. When sunlight traverses the atmosphere to reach objects, atmospheric scattering
and diffusion attenuate the constituent wavelengths, which results in an additive distortion
that is known as airlight. Meanwhile, the light waves that are reflected from objects are
affected by direct attenuation along the path to the camera’s aperture. Consequently,
the Koschmieder model mathematically decomposes a hazy image into two components:
direct attenuation and airlight, as shown in Equation (1).

L(λ, x) = L0(λ, x)exp[−β(λ)d(x)] + L∞(λ){1− exp[−β(λ)d(x)]}, (1)

where x denotes the spatial coordinates of pixels in both the horizontal and vertical di-
rections, λ represents the visible light wavelength, β denotes the atmospheric extinction
coefficient, d the distance from the object to the observer, L∞ the mean sky irradiance, L0
the scene irradiance, and L the image irradiance. The scene irradiance is a portion of the
mean sky irradiance that is reflected from the object. In other words, L0 can be expressed
as L∞ · F, where F is a dimensionless unit that denotes the reflectance factor. According to
the International System of Units, λ and d are measured in meter (m), β reciprocal meter
(m−1), and L∞, L0, and L watts per square meter per meter (W·m−3).

The mapping from irradiance to image intensity, which is also known as the camera
response function (CRF), depends on several factors, such as lens fall-off and the photo-
sensor’s sensitivity. Despite such complexities, Grossberg and Nayar [32] discovered that
the CRF is generally linear across the spatial dimensions of the image. Accordingly, it is
convenient to set I(x) = L(λ, x), J(x) = L0(λ, x), A = L∞(λ), and t(x) = exp[−β(λ)d(x)]
to simplify Equation (1).

I(x) = J(x)t(x) + A[1− t(x)], (2)

where t and A can henceforth be referred to as the transmission map and atmospheric light.
The boldface representations of I, J, and A indicate their wavelength-dependent character-
istics, whereas the dependency of t on wavelength is considerably weak, which results in
the omission of wavelength in its expression. Accordingly, t is a single channel variable.
In contrast, the boldfaced I, J, and A typically possess three channels that correspond to red,
green, and blue wavelengths. Figure 1 illustrates the optical hazy image formation based
on the simplified Koschmieder model. The turbid atmosphere comprising microscopic
particles attenuates and scatters the incoming light waves, which causes direct attenuation
and airlight represented by the corresponding terms Jt and A(1− t) that are shown in
Equation (2), respectively. Hence, the captured scene exhibits some observable characteris-
tics of hazy images, such as faint color, low contrast, and shifted luminance. This type of
image degradation hinders the proper function of high-level automatic visual recognition
algorithms being deployed in real-time systems. Therefore, a detailed investigation into
haze-relevant features will provide useful insights for developing the HDE.

Object radianceCapture scene

Microscopic 
turbidity

Illumination

Direct attenuation

Airlight

Surveillance 
camera

Autonomous car

Photographic
camera

Figure 1. Optical hazy image formation.
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2.2. Haze-Relevant Features

Several haze-relevant features have been reported in the literature, such as those that
were previously presented by Jiang et al. [12], Choi et al. [30], Min et al. [33], and An-
cuti et al. [34]. This subsection then explores these studies and provides a brief description
of features that are pertinent to predicting haze density from a single image. Readers
that are interested in a comprehensive treatment are referred to the work conducted by
Choi et al. [30]. First of all, the informative dark channel is considered. Based on extensive
observations on outdoor non-sky haze-free images, He et al. [6] discovered that local image
patches tend to possess dark pixels whose intensity is approximately zero because of
objects’ diverse colors. In this context, at least one color channel must exhibit very low
intensity, so that the object’s color can manifest itself. Conversely, hazy images exhibit
a considerable increase in luminance as a result of the additive airlight, which results in
the explicable absence of dark pixels. The same interpretation is applicable to the sky
region that is characterized by bright colors. He et al. [6] define the dark channel Idark of an
arbitrary image I, as follows:

Idark(x) = min
y∈Ω(x)

[
min

c∈{R,G,B}
Ic(y)

]
, (3)

where c denotes the color channel of I, Ω(x) represents the local patch centered at x,
and y denotes the pixel coordinates within Ω(x). The channel-wise minimum operation
minc∈{R,G,B}(·) yields a single-channel image; consequently, the spatial minimum filter
miny∈Ω(x)(·) yields a dark channel. It is noteworthy that, even though the minimum
operators are commutative, the presented order is optimal. To simplify, the order reversal
of the minimum operators presented in Equation (3) would approximately triple the
computational load because filtering an RGB image requires three spatial filters.

One of the hazy image’s observable characteristics is low contrast due to the scattering
and diffusion of reflected light in the atmosphere, as mentioned previously. Hence, contrast
is an appropriate feature for haze detection and haze density estimation. Regarding the
reliable measure of contrast, several indicators can be used, including the simple Michelson
contrast or the complex contrast energy [30]. In this study, the contrast C is calculated in a
patch-based manner as a variance of pixel intensities, as presented by Jiang et al. [12].

C(x) =

√√√√ 1
3|Ω(x)| ∑

y∈Ω(x)
‖I(y)− I(x)‖2, (4)

where |Ω(x)| denotes the size of Ω(x) (for example, |5× 5| = 25), and ‖ · ‖ the L2 norm
(or the Euclidean distance).

Two other observable characteristics of hazy images, pale color and shifted luminance,
are pertinent to the saturation and brightness of the image. These two features are available
in the Hue-Saturation-Value (HSV) color space, which is developed to resemble the way
that humans perceive color-making attributes. Accordingly, they can be derived from
the color space conversion, as shown in Equations (5) and (6) for normalized image data.
An exciting observation emerging from the formulas of saturation S and value V is that
their product SV becomes simpler, while a close correlation with haze density is retained.

S(x) =

max
c∈{R,G,B}

Ic(x)− min
c∈{R,G,B}

Ic(x)

max
c∈{R,G,B}

Ic(x)
, (5)

V(x) = max
c∈{R,G,B}

Ic(x), (6)

SV(x) = max
c∈{R,G,B}

Ic(x)− min
c∈{R,G,B}

Ic(x). (7)
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In addition to the saturation in the HSV color space, the distribution of image pixels in
the CIELab color space is exploited to measure the color attenuation of hazy images. The In-
ternational Commission on Illumination defines this color space as a perceptually uniform
space for detecting small color differences. Let [L(x), a(x), b(x)]T be the corresponding
pixel values of [IR(x), IG(x), IB(x)]T in the CIELab space. Hasler and Suesstrunk [35]
measure the image chroma by converting Cartesian coordinates a and b to the cylindrical
coordinate Ch. Similar to image saturation, chroma (also known as relative saturation)
is significantly correlated with haze density, but it is unaffected by the image content.
Jiang et al. [12] also observed a positive correlation between the variance of chroma and
haze density. Hence, chroma Ch and its variance σ2

Ch are both informative and usable fea-
tures for detecting the presence of haze and estimating haze density. Their corresponding
formulas are as follows:

Ch(x) =
√

a2(x) + b2(x), (8)

σ2
Ch(x) = ∑

y∈Ω(x)
ω(y)[Ch(y)− µCh(x)]2, (9)

µCh(x) = ∑
y∈Ω(x)

ω(y)Ch(y), (10)

where ω(·) denotes the weighting function (for example, Gaussian or uniform) to calculate
the mean µCh and variance σ2

Ch values.
The aforementioned saturation and chroma denote the colorfulness of a color that is

pertinent to its lightness. Another colorfulness measure, which quantifies the degree of
difference between color and gray information, provides valuable insights into the haze
density. Haseler and Suesstrunk [35] calculate this image colorfulness CF in the opponent
color space using the following formula:

CF(x) =
√

σ2
rg(x) + σ2

yb(x) + 0.3
√

µ2
rg(x) + µ2

yb(x), (11)

where rg and yb denote the red-green and yellow-blue channels, respectively. These two
components are derived from an observed RGB image I, as follows:

rg(x) = IR(x)− IG(x), (12)

yb(x) = 0.5[IR(x) + IG(x)]− IB(x). (13)

Additionally, an apparent loss of textual information due to atmospheric scattering
affects the hazy image. Accordingly, its sharpness and details have diminished signifi-
cantly. Based on this observation, the image entropy IE and image brightness variance
σ2

I (also known as sharpness) are exploited to detect haze presence and estimate haze
density. These statistical features are derived from a grayscale image Igray, as shown in
Equations (14) and (16), where hy denotes the grayscale intensity of the pixel and p(hy)
represents the corresponding probability of hy estimated from the normalized histogram.

σ2
I (x) = ∑

y∈Ω(x)
ω(y)[Igray(y)− µI(x)]2, (14)

µI(x) = ∑
y∈Ω(x)

ω(y)Igray(y), (15)

IE(x) = − ∑
y∈Ω(x)

p(hy)log2[p(hy)]. (16)

The last haze-relevant feature presented herein is the hue disparity that was proposed
by Ancuti et al. [34] to generalize the dark channel approach of He et al. [6]. They define hue
disparity HD as the absolute difference between hue values of the observed image I and its
semi-inverted image Isi, as shown in Equation (17), where superscript H denotes the hue
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channel in the HSV color space and cmax(·) represents the channel-wise maximum operator.
The dark channel approach can result in an inaccurate estimate of the transmission map in
the sky region; therefore, the semi-inverted image is used in the hue disparity approach,
as mentioned in Section 1.

HD(x) = |IH(x)− IH
si (x)|, (17)

Isi(x) = cmax[I(x), 1− I(x)]. (18)

Figure 2 demonstrates a real hazy image and its corresponding haze-relevant features.
The feature values are min-max normalized, and Figure 2k depicts the reference color
bar. It is observed that the hazy image shown in Figure 2a is comprised of three regions
with mild, moderate, and dense haze. Among the nine features, the dark channel and
image entropy presented in Figure 2b,j exhibit a close correlation to perceptual haze density,
and they are on two opposite sides. The dark channel is directly proportioned to haze
density, whereas image entropy manifests the inverse proportion. A correlation also
exists between the remaining features and haze density, although it is not as evident as
the previous two features. However, it is noteworthy that there currently does not exist
an ideal haze-relevant feature that correlates perfectly with haze density. Accordingly,
individual features may break down in certain circumstances, and therein lies the need for
their mutual combinations. For example, the dark channel has incorrectly treated the white
swans as densely hazy objects, owing to their bright appearance. Therefore, the image
sharpness can be used to signify that they are informative objects.

a b c d e

f g h i j

k
Figure 2. An illustration of a hazy image and its corresponding haze-relevant features. (a) Hazy image, and its (b) dark
channel, (c) contrast, (d) saturation × value, (e) chroma, (f) variance of chroma, (g) colorfulness, (h) sharpness, (i) hue
disparity, (j) image entropy, and (k) reference color bar.

Moreover, because nine features characterize the image’s three main aspects, includ-
ing contrast, colorfulness, and sharpness, Figure 2 shows that some features are relatively
similar to one another. For example, the dark channel is quite analogous with hue disparity
and image entropy, because investigations on these three features result in a similar dis-
tinction between hazy regions. Similarly, there is a resemblance between the product of
saturation and value, chroma, chroma’s variance, and colorfulness. Meanwhile, sharpness
resembles local contrast to a moderately high degree. This observation, coupled with this
study’s ultimate objective of deriving the proposed HDE’s closed-form expression, lies the
motivation for the correlation and computation analysis shown in Section 3.3.

Figure 3 illustrates the normalized histograms of all nine haze-relevant features that
were calculated on both real and synthetic datasets, which are described in Section 3.2.
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Haze-free images contain a certain amount of haze at a distance for humans to perceive
depth, as mentioned in Section 1. Accordingly, the features’ histograms exhibit various
degrees of overlap depending on each feature’s sensitivity to haze. However, all of the
features are, on the one hand, exploitable for detecting haze presence and estimating haze
density. On the other hand, it is not recommended to utilize all of them because some
features are not differentiable and they may result in a seemingly intractable objective
function. Hence, in the upcoming section, a correlation and computation analysis for
reducing the number of haze-relevant features will be presented. This simple analysis
exploits the correlation between features and considers their computational complexity to
yield easily differentiable features for formulating the objective function. Maximizing this
function results in an optimal transmission map, which is inversely proportional to haze
density and can be used to calculate the proposed HDE.

Figure 3. The normalized histograms of nine haze-relevant features. The horizontal axis is the normalized feature value,
and the vertical axis is the pertinent frequency of occurrence.

3. Haziness Degree Evaluator

The proposed HDE quantifies the haze density from a single image based on haze-
relevant features, which characterize the image contrast, colorfulness, and sharpness,
as described in Section 2.2. It is necessary to devise an analytically solvable objective
function because this study aims to derive the HDE’s closed-form formula. Hence, this
study analyzes the correlation between features and examines their calculation to draw
three computationally efficient feature that will be used to formulate the objective function.
This section begins by framing essential steps to derive the HDE. It then introduces the
employed datasets, the feature selection scheme, the analytically solvable objective function,
and the HDE’s closed-form formula. Finally, it concludes by discussing the necessity of
using multiple haze-relevant features to derive the HDE.

3.1. Overview of HDE Derivation

Figure 4 illustrates the HDE’s derivation from nine haze-relevant features, which are
discussed in Section 2.2 based on the work of Jiang et al. [12], Choi et al. [30], Min et al. [33],
and Ancuti et al. [34]. Because these features mutually characterize the image’s funda-
mental aspects, such as contrast, colorfulness, and sharpness, this study first analyzes
their correlation and computation to reduce the number of employed features. This anal-
ysis step results in three features—dark channel, the product of saturation and value,
and sharpness—that are haze-relevant and computationally inexpensive, as depicted
in Figure 4. Meanwhile, the scene radiance’s formula can be obtained by rearranging
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Equation (2). Additionally, the fact that the sole input image suffices for estimating the
atmospheric light lowers the number of unknowns to one, which lays the dependency of
scene radiance on the transmission map. This dependency is exploited when calculating
the aforementioned three features of scene radiance, which leads to their corresponding
dependency on the transmission map. The objective function that is derived from those
features is then not an exception. Optimizing this objective function results in the optimal
transmission map, which is used to calculate the proposed HDE. In addition, Section 4
discusses three HDE-based applications, including hazy/haze-free image classification,
dehazing performance assessment, and single image dehazing.

Koschmieder’s law

I = Jt + A(1 – t)

Scene radiance’s formula

J = (I – A)/t + A

Haze-relevant features
(9 features)

Correlation and 
computation analysis

Haze-relevant features
(3 features)

Scene radiance’s features

SV(J) = SV(t)
Jdark(J) = Jdark(t)

σ(J) = σ(t)

Objective function
O(t) = SV(t)σ(t)/Jdark(t) + κR(t)

Optimal transmission map
t^

Haziness degree evaluator 
HDE

I is input image
A can be estimated given I

Dehazing performance 
assessment

Hazy/haze-free image 
classification

Single image dehazing

Figure 4. An overview of the proposed haziness degree evaluator’s derivation.

3.2. Employed Datasets

Datasets comprising hazy and haze-free images are necessary for calculating the
normalized histograms shown in Figure 3, as discussed in Section 2.2, and calculating
the correlation coefficients between haze-relevant features in the correlation and compu-
tation analysis. Real and synthetic datasets are both used in this study for a thorough
evaluation of diverse images. IVC [36], O-HAZE [37], I-HAZE [38], FINEDUST [17],
500IMG [39], and Dense-Haze [40] are the real datasets considered. IVC consists of 25 hazy
images depicting various scene types, including indoor/outdoor spots, daytime/night-
time, landscapes, humans, and animals. O-HAZE comprises 45 pairs of hazy/haze-free
outdoor images, whereas I-HAZE comprises 30 pairs of hazy/haze-free indoor images.
Ancuti et al. [40] thereafter presented Dense-Haze, which is a larger dataset made up of 55
pairs of hazy/haze-free indoor and outdoor images. While the aforementioned datasets are
widely publicized, FINEDUST and 500IMG are self-collected ones utilized in our previous
studies. FINEDUST’s 30 constituent images are affected by notorious fine dust or yellow
dust, and 500IMG’s 500 constituent images are haze-free images with a wide coverage of
scene types.

This study also employs the FRIDA2 [41] and D-HAZY [42] datasets, which exemplify
the main types of synthetic images. FRIDA2 comprises 66 ground-truth road-scene images
that are generated by SiVIC™ software. From these images, the Koschmieder model
and its variants are exploited to generate four sets of 66 hazy images (that is, 264 hazy
images in total), including homogeneous, heterogeneous, cloudy homogeneous, and cloudy
heterogeneous sets. Meanwhile, 1472 hazy indoor images in D-HAZY are derived from
the corresponding real haze-free images. In this context, the requisite scene depths in the
Koschmieder model are captured using the Kinect camera. Table 1 provides a summary of
all eight datasets that were employed in this study, where NA stands for not available.
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Table 1. Summary of the real and synthetic datasets employed in this study. NA stands for not avail-
able.

Dataset Type Hazy Images (#) Haze-Free Images (#) Ground Truth

IVC Real 25 NA No
FRIDA2 Synthetic 264 66 Yes
D-HAZY Synthetic 1472 1472 Yes
O-HAZE Real 45 45 Yes
I-HAZE Real 30 30 Yes

FINEDUST Real 30 NA No
500IMG Real NA 500 No

Dense-Haze Real 55 55 Yes
The “#” symbol denotes the number of images.

3.3. Correlation and Computation Analysis

In terms of statistical significance, correlation reflects the relationship between two
variables, and several metrics are available for measuring the degree of correlation. Among
them, the Pearson coefficient [43] appears to be the most prevalent. This coefficient is
sensitive to a linear relationship, and its formula is as follows:

ρQZ =
∑n

i=1(qi − q̄)(zi − z̄)√
∑n

i=1(qi − q̄)2 ∑n
i=1(zi − z̄)2

, (19)

where (Q, Z) denotes the pair of variables considered, (qi, zi) represents one of n measure-
ments, and (q̄, z̄) denotes the sample means of (Q, Z). The Pearson correlation coefficient
ρQZ ranges from −1 to 1, where 1 (or −1) signifies a perfect linear relationship (or an in-
verse one) and 0 signifies no association between (Q, Z). The correlations between the
haze-relevant features are noticeable, as shown in Figure 3. Every feature, except the dark
channel, exhibits a positive correlation with one another. Accordingly, this study utilizes
the absolute value of the Pearson correlation coefficient for ease of expression.

Figure 5 shows the correlation values that are calculated from the hazy images of em-
ployed datasets, where Table 2 shows each feature identification (ID) and its corresponding
description. The computation follows the procedure that was presented by Choi et al. [30],
according to which this study first divides hazy images into patches and then calculates
the patch-based feature values. However, haze does not obscure all the patches within a
hazy image; some of them may be haze-free, notably those that are close to the camera.
Therefore, this study only selects representative patches based on the mean feature values
for correlation computation. Regarding the dark channel ( f1), Figure 5 illustrates that it
is highly correlated with the local contrast ( f2), hue disparity ( f8), and local entropy ( f9);
hence, it is suggested that only one among the four features is adequate. Equations (3), (4),
(16), and (17) demonstrate that the calculation of the dark channel ( f1) is the least involved.
In particular, Equation (4) requires three squaring operations for individual pixels within
the local patch and a square root of the accumulated square. Equation (16) requires the
construction of a local normalized histogram, a logarithm operation, and an accumulation
over the local patch. Equation (17) requires a channel-wise maximum operation, followed
by a conversion to the HSV color space. By contrast, Equation (3) only requires two min-
imum operations. Therefore, this investigation supports selecting the dark channel ( f1)
among the local contrast ( f2), hue disparity ( f8), and local entropy ( f9).



Sensors 2021, 21, 3896 12 of 32

Figure 5. The absolute values of the Pearson correlation coefficients between haze-relevant features.

Table 2. A summary of haze-relevant features. ID stands for feature identification.

ID Symbol Description Computation

f1 Idark Dark channel Equation (3)
f2 C Contrast Equation (4)
f3 SV Saturation × Value Equation (7)
f4 Ch Chroma Equation (8)
f5 σ2

Ch Variance of chroma Equation (9)
f6 CF Colorfulness Equation (11)
f7 σ2

I Sharpness Equation (14)
f8 HD Hue disparity Equation (17)
f9 IE Image entropy Equation (16)

After performing the aforementioned investigation, five features remain, which is, fi,
where i ∈ Z∩ [3, 7]. This representation signifies that i is an element of the set intersection of
the integers with the interval between three and seven. The investigation is now proceeding
with the remaining features. Figure 5 demonstrates that the product of saturation and value
( f3) is closely correlated to chroma ( f4) and colorfulness ( f6). Equations (7), (8), and (11)
then support selecting f3 as the second usable feature. The calculation of chroma ( f4) and
colorfulness ( f6) is considerably complicated, because it involves color space conversion,
squares, square roots, means, and variances. By contrast, calculating the product of
saturation and value ( f3) only involves channel-wise minimum and maximum operations.
Furthermore, the variance of chroma ( f5) can also be excluded for the elimination of chroma
( f4). Consequently, one feature remains, which is, sharpness ( f7), which correlates with the
computationally expensive local contrast ( f2). Hence, three features are selected after the
correlation and computation analysis, including the dark channel ( f1), product of saturation
and value ( f3), and sharpness ( f7). Because this study utilizes a considerably large number
of images for investigating haze-relevant features, it can be postulated that the result of
the correlation and computation analysis holds for all images in general. Figure 6 visually
summarizes this subsection for ease of understanding. The red rectangles highlight the
features that were investigated in each round, and the selected features are shown in
the bottom-right corner. In the upcoming subsection, these three haze-relevant features
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are used to formulate an objective function to obtain the closed-form formula for the
proposed HDE.

!

f2 f8 f9

f1

Selected features

f1

a

!

f4 f6

f3

Selected features

f1 f3

b

!

f7

Selected features

f1 f3 f7

The removal of f5 is a
positive ramification since
f5 is the variance of f4

c
Figure 6. Illustration of the correlation and computation analysis for feature selection: (a) the first round, (b) the second
round, and (c) the third round.

3.4. HDE Formula via Analytical Optimization of Objective Function

In the simplified Koschmieder model, the transmission map is inversely proportional
to the haze density of the image. Hence, this study formulates an objective function that
is based on the selected haze-relevant features, including the dark channel, product of
saturation and value, and sharpness. Subsequently, this objective function is optimized to
determine the optimal transmission map, which can be used to devise the HDE’s closed-
form formula.

Firstly, rearranging Equation (2) results in the formula for the scene radiance as follows:

J(x) =
I(x)−A

t(x)
+ A, (20)

where t is in the range (0, 1] to prevent a division by zero. This value range is also
directly derivable from the definition t(x) = exp[−β(λ)d(x)] presented in Section 2.1 as
the scene depth ranges from zero to infinity. Theoretically, the transmission map can
become zero when the scene depth approaches infinity. However, because the current
imaging technology is unable to capture image data at infinity, the transmission map only
takes on values that are between (0, 1].

Two postulates concerning the transmission map and atmospheric light are introduced
before extracting haze-relevant features of the scene radiance. Because the transmission
map is depth dependent, it is generally smooth, except for discontinuities, such as the
objects’ contours. Hence, the first postulate is that the transmission in a local patch is
constant, which is, miny∈Ω(x) t(y) = t(x). Additionally, atmospheric light is typically the
brightest image pixel, which results in an insignificant difference between its constituent
channels. Therefore, the second postulate is AR = AG = AB = A. The plain symbol A
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is used herein to denote atmospheric light to conform with the second postulate, which
simplifies a three-channel variable into a single channel variable. Using these two assump-
tions, coupled with the linearity of Equation (20), the dark channel, product of saturation
and value, and sharpness of the scene radiance are as follows (it is noteworthy that the
spatial coordinates are omitted for ease of expression):

Jdark = A− A− ImΩ

t
, (21)

SV(J) =
Imc

t
, (22)

σ2
J =

σ2
I

t2 , (23)

where Imc = maxc∈{R,G,B} Ic −minc∈{R,G,B} Ic and ImΩ = miny∈Ω

(
minc∈{R,G,B} Ic

)
. De-

tails on the derivation of the above equations can be found in Appendix A. Given the input
image I, the atmospheric light A can be easily obtained using the quad-tree decomposition
algorithm that was proposed by Park et al. [44]. The transmission map t is then an only
unknown in Equations (21)–(23). Accordingly, it is convenient to regard the three features
above as functions of t, which is, Jdark(t), SV(t), and σ2

J (t). Moreover, utilizing σJ instead of
σ2

J is highly beneficial in the subsequent optimization. Accordingly, the devised objective
function, O(t), appears in Equation (24), where R(t) and κ are the regularization term and
parameter, respectively. κR(t) is used to introduce adjustment ability to the transmission
map that optimizes the objective function. SV(t) and σJ(t) are inversely proportional
to the haze density, whereas Jdark(t) exhibits the opposite relationship, as discussed in
Section 2.2. Therefore, the objective function’s formula is explicable, because maximizing
O(t) is similar to maximizing SV(t)σJ(t) while minimizing Jdark(t).

O(t) =
SV(t)σJ(t)

Jdark(t)
+ κR(t). (24)

Furthermore, the criterion for selecting the regularization term is that the optimization
of O(t) is non-demanding and analytically solvable. Hence, this study selects R(t) = 1/t.
Subsequently, substituting Equations (21)–(23) into Equation (24) results in the follow-
ing equation:

O(t) =
ImcσI

t(At− A + ImΩ)
+

κ

t
. (25)

Setting the first derivative of O(t) to zero while ensuring that the second derivative is
negative yields the optimal transmission map, which is denoted as t̂.

t̂ = 1− 1
A

[
ImΩ + B−

√
B(B− A + ImΩ)

]
, (26)

where

B =
ImcσI

κ
, κ 6= 0, (27)

κ ≤ ImcσI

A− ImΩ
. (28)

Using the optimal transmission map t̂, the proposed HDE can be calculated, as follows:

HDE =
1
|Ψ| ∑

∀x∈Ψ
[1− t̂(x)], (29)

where Ψ denotes the entire image domain and |Ψ| is the total number of image pixels.
The HDE exhibits the opposite trend because t̂ is inversely proportional to the haze density.
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In addition, the HDE values are in the range [0, 1), wherein the larger values indicate a
higher degree of haziness (that is, thicker haze).

It is noteworthy that the HDE is derived from the optimal transmission map, which
is, in turn, obtained through optimizing the scene radiance’s features. Thus, the proposed
method bears some similarity to image dehazing algorithms that estimate the transmission
map from a set of image features. The method that was developed by Tang et al. [16] is
a prime example. It extracts haze-relevant features from a single hazy image and infers
the corresponding transmission map utilizing the random forest regression technique.
Although it is fundamentally similar to the proposed method, the key difference lies in the
computational efficiency. Transmission map inference using random forest regression is
extremely time-consuming, whereas the optimal transmission map presented in this study
is conveniently calculated by a closed-form formula in Equation (26). Later on, Section 5
will demonstrate a run-time comparison between the proposed HDE and two benchmark
methods for validating its computational efficiency.

Moreover, dehazing networks, such as DehazeNet [20], AOD-Net [21], and FAMED-
Net [22], share a basic principle with the proposed HDE. Those models leverage the
powerful representation capability of deep neural networks to estimate the transmission
map or the K variable—a coalescence of the transmission map and atmospheric light.
Accordingly, they can attain high estimation accuracy and spatial invariance, since the
deep architecture allows for synthesizing robust high-level features from low-level features,
which are generally extracted at the first hidden layer. The proposed HDE, in contrast,
derives the optimal transmission map from three low-level features, which are already
highly correlated to the haze density. Additionally, Equation (29) aggregates the optimal
transmission map to obtain a single value for haze density estimation. Hence, high accuracy
and spatial invariance are not the most prominent priorities. Consequently, the proposed
HDE’s simplicity can facilitate its integration into other visibility restoration algorithms.

3.5. Necessity of Using Multiple Haze-Relevant Features to Derive the HDE

Visibility restoration from a single image in hazy weather is an ill-posed problem,
since the unknown outnumbers the observation. Consequently, researchers have conducted
extensive studies into the underlying relationship between hazy and haze-free images.
Virtually all of these studies center around the following idea:

• Observing hazy and haze-free images, investigating statistical measures to discover
regularities, and relating them to one or several image features.

• Utilizing the discovered features to infer the requisites for scene radiance recovery.

Subsequently, the number of image features and the degree to which they correlate with
the haze distribution are decisive factors in the restoration quality of the scene radiance.
Generally, the more image features that an algorithm leverages, the higher performance
it can attain. This statement is supported by the recently reported state-of-the-art perfor-
mance of deep-learning-based dehazing networks (for example, FAMED-Net [22]). These
networks are equipped with many hidden layers, which allows them to learn both the
low-level and high-level image features in a statistically robust manner. Nevertheless, this
powerful representation capability comes at the cost of a heavy computational burden.

The proposed HDE utilizes low-level handcrafted image features whose correlation
with haze density has been observed in the literature to bridge the gap between compu-
tational complexity and delivered performance. Additionally, a simple correlation and
computation analysis has been conducted to select only three differentiable and compu-
tationally efficient features. This selection step is for the ultimate objective of deriving a
closed-form formula to calculate the HDE. It is also necessary to leverage more than one
feature, since the employed features can mutually compensate for each other’s failures.
For example, suppose that this study only utilizes the dark channel to formulate the objec-
tive function. In that case, the optimal transmission map (t̂DCP) becomes identical to that
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presented by He et al. [6], as shown in Equation (30). Accordingly, it also inherits all of the
well-known shortcomings of the dark channel prior.

t̂DCP = 1− ImΩ

A
. (30)

Figure 7 illustrates a real hazy image and its corresponding transmission map esti-
mates using Equations (26) and (30) to validate the efficacy of utilizing multiple image
features. In this figure, transmission map estimates are displayed with a different color
map, as compared with Figure 2, depicting haze-relevant features, in order to avoid con-
fusion. It is observed that Figure 7a comprises the distant snowy mountains and cloudy
sky. Consequently, Equation (30) incorrectly estimates these regions as densely hazy, being
represented by low values according to the reference color bar that is shown in Figure 7d.
Restoring the scene radiance using this transmission map estimate causes color distortion
in the sky region, as demonstrated later in Section 4.3. The proposed HDE, in contrast, cor-
rectly estimates those regions as moderately hazy, as depicted in Figure 7c. This improved
accuracy is attributed to the other two features: the product of saturation and value and
the sharpness, and therein lies an explicable reason for the HDE’s derivation.

a b c

d
Figure 7. Illustration of a hazy image and its corresponding transmission map estimates. (a) Hazy image, and its (b)
transmission map estimate based on the dark channel, (c) optimal transmission map derived in this study, and (d) reference
color bar.

4. HDE-Based Applications

In a study on the effects of image degradation on object recognition, Pei et al. [45]
discovered that the reduction in accuracy is proportional to the haze density. Therefore,
image dehazing algorithms are beneficial to high-level automatic visual recognition tasks in
adverse weather conditions. However, they may become unfavorable in the clear weather
because untoward image artifacts are observable in this case. Accordingly, the proposed
HDE can bring a new dimension to the existing dehazing algorithms due to its ability
to quantify the image’s haze density. This valuable piece of information can equip those
algorithms with the "haze awareness” capability, which enables them to selectively dehaze
input images. Hence, this section discusses the hazy/haze-free image classification task
using the proposed HDE and provides the experimental results to demonstrate its superi-
ority in this application. Additionally, this section provides a discussion on using HDE as a
quantitative assessment tool as well as demonstrating its dehazing capability.

4.1. Hazy/Haze-Free Image Classification

It is clear that haze exists in the image because the atmosphere is not entirely free
of turbidity, as mentioned earlier in Section 1. In other words, the quantification of the
image’s haze density using the proposed HDE results in a non-zero value. Therefore, it is
essential to determine the decision value for the hazy/haze-free image classification task.
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In this context, a particular image is regarded as a hazy image if its HDE value is larger
than the decision value, and vice versa. This study determines the decision value based on
a trivial looping method. First, given the data Φ comprising hazy and haze-free images,
this method calculates the corresponding HDE values and then organizes them into hazy
and haze-free sets. After that, it initiates the decision value DV using the average of the
mean HDE values of these two sets. Subsequently, it iteratively changes DV around its
initial value and calculates the corresponding accuracy ACCΦ. Finally, it selects the DV
value that results in the maximum ACCΦ, as described by the following expression.

argmax
DV

ACCΦ. (31)

In this study, the employed data Φ consists of eight datasets that were previously
summarized in Table 1. The total numbers of hazy and haze-free images are then 1921
and 2168, respectively. These images include both real and synthetic scenes that cover a
wide range of scenarios. Therefore, the diversity in image content, coupled with copious
amounts of image data, supports using the decision value determined herein to classify
hazy/haze-free images in general. Appendix B presents the corresponding experimental
results and source code for reproducibility to avoid digression.

A brief review of terminologies and derivations, as presented by Chicco and Jur-
man [46], is discussed next as the preliminary stage of accuracy computation. In the
hazy/haze-free image classification task, “hazy” is a positive class, and “haze-free” is a
negative class. Accordingly, the condition positive P is the number of real positive cases
in the data Φ. The true positive TP is the number of cases in which the proposed evalu-
ator correctly predicts as positive (that is, hazy). Conversely, for positive cases, the false
negative FN is the number of cases that the proposed evaluator incorrectly predicts to be
negative. Similarly, the condition negative N is the number of real negative cases in the
data Φ. The true negative TN is the number of cases in which the proposed evaluator
correctly predicts as negative (that is, haze-free). The false positive FP is the number of
cases that the proposed evaluator incorrectly predicts to be positive. Table 3 provides a
summary of these terminologies and derivations.

Table 3. Summary of terminologies and derivations for evaluating the hazy/haze-free image classifi-
cation task.

True positive TP False positive FP

Given: hazy images Given: haze-free images
Predicted: hazy Predicted: hazy

False negative FN True negative TN

Given: hazy images Given: haze-free images
Predicted: haze-free Predicted: haze-free

The four outcomes that are listed in Table 3 correspond to the four probabilities,
namely the true positive rate TPR, false negative rate FNR, true negative rate TNR,
and false positive rate FPR. The following formulas are used to calculate the TPR, FNR,
TNR, FPR, and accuracy ACCΦ for data Φ. It is noteworthy that the data Φ comprise
positive P and negative N conditions.

TPR =
TP
P

=
∑i∈P[HDEi > DV]

P
, (32)

FNR =
FN
P

=
P− TP

P
= 1− TPR, (33)

TNR =
TN
N

=
∑i∈N [HDEi ≤ DV]

N
, (34)
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FPR =
FP
N

=
N − TN

N
= 1− TNR, (35)

ACCΦ =
TP + TN

P + N
. (36)

In Equations (32) and (34), this study adopts Iverson’s convention [47], which encloses
a true-or-false statement in brackets. The term [·] is one when the enclosed statement is
true, and it is zero otherwise. In addition to the proposed HDE, the optical depth that was
proposed by Jiang et al. [12] (henceforth referred to as DF for short) and the FADE [30] are
also haze density evaluators. Accordingly, the aforementioned binary classification task is
attainable using the DF or FADE. Specifically, the procedure for determining the decision
value that results in the maximum classification accuracy is repeated, except that FADE
and DF are used instead of HDE. Table 4 summarizes the classification results using three
haze density evaluators, including the FADE, DF, and the proposed HDE. In Table 4, HDEβ

denotes the proposed HDE at the current stage, because further effort will be expended
to improve the classification accuracy. Although the HDE achieves the highest accuracy
of 93.8%, it appears to be unimpressive when compared with the human accuracy of
approximately 95%, which is obtained from the results of an ImageNet large-scale visual
recognition challenge [48]. Hence, this study will present the image intensity emphasis for
increasing the classification accuracy.

Table 4. The accuracy report for the hazy/haze-free image classification task using haze density eval-
uators.

Class FADE DF HDEβ

DV 0.9866 0.2968 0.4725

P 1921
TP 1785 1672 1750

TPR 92.9% 87.0% 91.1%
FN 136 249 171

FNR 7.1% 13.0% 8.9%

N 2168
TN 2005 2038 2084

TNR 92.5% 94.0% 96.1%
FP 163 130 84

FPR 7.5% 6.0% 3.9%

ACCΦ 92.7% 90.7% 93.8%

In the follow-up investigation, only 25 hazy images from the IVC dataset and 45
haze-free images from the O-HAZE dataset are utilized to demonstrate the efficacy of
image intensity emphasis in improving the classification accuracy for ease of presentation.
Figure 8 illustrates the HDE values of these images as well as the decision value. For the
two datasets, the total number of incorrectly predicted cases is 14. However, from Figure 8,
it is noteworthy that the FN can decline if the HDE values increase and exceed the decision
value. Therefore, revisiting Equation (26) provides insights into the method by which the
HDE values can be increased, which is, modifying either the input image I or regularization
parameter κ. Among these two options, because some restrictions are imposed on κ,
the former appears to be more feasible and it results in a further investigation with regard
to modifying A, ImΩ, Imc, and σI.

Of all four possibilities, modifying A and Imc is ineffective, because A is typically
the brightest pixel in the image, and Imc is the difference between two extreme channels.
Hence, there remain two ways to increase the HDE values through increasing ImΩ and
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decreasing σI. These two operations are then attainable while using channel-wise intensity
emphasis, as shown below.

Ie = Iγ, (37)

where 0 < γ < 1 denotes the emphasis strength and the subscript e stands for emphasis.
Through this simple operation, the image intensity increases globally and, hence, the
increase in ImΩ. Additionally, an increase in the image intensity causes the data to be closer
to the mean, which results in a reduced σI.

Figure 8. The scatter plot of the HDEβ values of images in the IVC and O-HAZE datasets.

Figure 9 demonstrates the classification accuracy as a function of γ to provide insights
into the empirical determination of the γ value. It is observed that the proposed HDE more
accurately classifies hazy and haze-free images as γ decreases. In addition, there is no
significant change in the classification accuracy after it reaches 96%. Therefore, although γ
values from 1/8 to 1/11 appear to be acceptable, the value 1/9 is selected because it is
virtually the point of intersection among the TPR, TNR, and ACCΦ. Figure 10 illustrates
the new HDE values of the images in the IVC and O-HAZE datasets after performing
image intensity emphasis. It is noteworthy that the decision value has been redetermined
using Equation (31) to ensure the maximum accuracy. Hence, the number of incorrectly
predicted cases has decreased significantly, which is, from 14 to 8, as depicted in Figure 10.
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Figure 9. Classification accuracy as a function of γ.

Figure 10. Scatter plot of the HDE values of images in the IVC and O-HAZE datasets after image
intensity emphasis.

Table 5 shows the updated accuracy report for the hazy/haze-free image classifica-
tion using the FADE, DF, HDEβ, and the proposed HDE with image intensity emphasis.
By virtue of this simple image processing technique, the proposed HDE has more accu-
rately classified the hazy images while retaining an impressive TNR for haze-free images.
Therefore, a considerable increase in the TPR (4.8%) has boosted the accuracy to 96%,
which is superior to those of the FADE, DF, as well as human observers.
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Table 5. The updated accuracy report for hazy/haze-free image classification task using haze
density evaluators.

Class FADE DF HDEβ HDE

DV 0.9866 0.2968 0.4725 0.8811

P 1921
TP 1785 1672 1750 1843

TPR 92.9% 87.0% 91.1% 95.9%
FN 136 249 171 78

FNR 7.1% 13.0% 8.9% 4.1%

N 2168
TN 2005 2038 2084 2081

TNR 92.5% 94.0% 96.1% 96.0%
FP 163 130 84 87

FPR 7.5% 6.0% 3.9% 4.0%

ACCΦ 92.7% 90.7% 93.8% 96.0%

4.2. Dehazing Performance Assessment

An image’s HDE value lies in the range [0, 1), and it is proportional to the haze density,
as discussed in Section 3.4. Therefore, similar to other IQA metrics, the proposed HDE
is exploitable in dehazing performance assessment, wherein lower HDE values signify
a stronger dehazing power. Additionally, the proposed HDE offers a definite advantage
over full-reference IQA metrics, in that it does not require ground-truth references for
quantitative assessment. Hence, it is apposite in evaluating dehazing algorithms on general
hazy scenes whose haze-free references are usually unavailable.

This section evaluates three typical dehazing algorithms that were proposed by
He et al. [6], Tarel and Hautiere [8], and Zhu et al. [49] on the LIVE [30] and D-HAZY [42]
datasets. The LIVE dataset consists of 500 hazy images and 500 unpaired haze-free images,
while the D-HAZY dataset has been introduced earlier in Section 3.2. Although two datasets
comprise hazy and haze-free images, this study only utilizes hazy images to assess the
dehazing performance. On the LIVE dataset, the average HDE values that are summarized
in Table 6 demonstrate that the algorithm proposed by He et al. [6] is the best performing
method. The second best and third best are those proposed by Tarel and Hautiere [8] and
Zhu et al. [49], respectively. When compared with the assessment using the FADE metric
conducted by Galdran [50], our experimental results correctly reflect the actual dehazing
performance. Specifically, two experiments are conducted on the same dataset, but with
different assessment metrics. The results reported by Galdran [50] demonstrate that the
method that was proposed by Tarel and Hautiere [8] is not usually the best method, despite
the fact that the opposite is widely validated in the literature. The evaluation results that
were provided by Ancuti et al. [42] are a prime example. They exploited a full-reference
IQA metric, known as the structural similarity (SSIM) [51], to quantitatively assess dehaz-
ing algorithms on the D-HAZY dataset. The method that was proposed by He et al. [6] is
superior to that proposed by Tarel and Hautiere [8] in terms of SSIM, as shown in the last
row of Table 6. This result is consistent with our result on the D-HAZY dataset using the
proposed HDE.
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Table 6. Quantitative evaluation results of dehazing algorithms on LIVE and D-HAZY datasets. NA
stands for not available.

Dataset
Algorithm He et al. [6] Tarel and Hautiere [8] Zhu et al. [49]

LIVE assessed by 0.1882 0.2172 0.2605
D-HAZY HDE 0.2925 0.3739 0.3674

LIVE assessed by 0.8700 0.7480 1.0480FADE [50]

D-HAZY assessed by 0.8110 0.7190 NASSIM [42]

4.3. Single Image Dehazing

A byproduct of the proposed HDE, the optimal transmission map in Equation (26),
is exploitable in single image dehazing. Figure 11 depicts the block diagram of the HDE-
based dehazing algorithm for handling an arbitrary input image, regardless of whether it is
hazy or haze-free. In this context, the aforementioned hazy/haze-free image classification
task is invoked on the input image to obtain an enabling signal. This signal is zero when
the input image is haze-free, and vice versa. It is then utilized to route the desired result to
the output, which conforms with the following straightforward principle:

• The HDE-based algorithm by-passes the input image if it is haze-free.
• Otherwise, it outputs the result of the image dehazing branch.

Regarding the image dehazing branch, the transmission map and atmospheric light
are two requisites for recovering the scene radiance. Fortunately, they can be obtained dur-
ing the HDE’s calculation. This study utilizes the quad-tree decomposition algorithm [44]
to estimate the atmospheric light from the single input image, as mentioned in Section 3.4.
Equation (26), in turn, yields the transmission map, which further undergoes the guided-
filtering-based refinement step [7]. Before recovering the scene radiance according to
Equation (20), this study explicitly imposes an adaptive lower limit on the refined transmis-
sion map to ensure that the dehazed result is not black-limited. This problem occurs when
the transmission map value is too small and, thus, Equation (20) can yield negative values,
notably for the dark image regions. Those negative values are referred to as arithmetic
underflow, and they are often limited to zero, and therein lies the occurrence of black pixels.
Color distortion may become observable when the corresponding transmission map values
are too small, even for other image regions. A majority of the existing algorithms in the
literature have adopted a fixed lower limit to constrain the transmission map. For example,
He et al. [6] and Zhu et al. [49], respectively, leveraged the lower limits of 0.1 and 0.05.
However, the fixed lower limit is not a viable solution in a general case. Therefore, our
previous work [52] proposed an adaptive lower limit to remedy this problem. The final
transmission map (t̂ f ) for the scene radiance recovery step is then expressed, as follows:

t̂ f = min
[
GF
(
t̂
)
, tl
]
, (38)

where min(·) denotes the element-wise minimum operation, GF(·) represents the guided
image filtering operation, and tl denotes the adaptive lower limit. It is noteworthy that
the input image is exploited as guidance in GF(·), and tl can be easily calculated given the
input image and the atmospheric light. However, the complete formula of tl is relatively
lengthy, and interested readers are referred to our previous work [52] for a full description.
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Equation (20) can be modified to reflect the scene radiance recovery of the HDE-based
dehazing algorithm, as presented below:

J(x) =


I(x)− A

t̂ f
+ A HDE > DV

I(x) HDE ≤ DV.
(39)

It is worth recalling that this study has postulated that the difference between three con-
stituent channels of the atmospheric light is negligible in Section 3.4. Thus, Equation (39)
has utilized the plain symbol A.

Arbitrary 
input image

Quad-tree 
decomposition

Equation 
(26)

Equation 
(29)

Hazy/haze-free 
classification
[HDE > DV]

Guided image 
filter

Adaptive 
lower limit

Scene radiance 
recovery

Output 
image

0

1

Enabling
signal

Image dehazing branch

Haziness degree evaluator branch

Optimal transmission mapAtmospheric light

Figure 11. Block diagram of the HDE-based dehazing algorithm.

This study now presents the qualitative and quantitative assessments for evaluat-
ing the HDE-based dehazing algorithm in comparison with the aforementioned typical
methods that are shown in Section 4.2. Because these algorithms generally produce sat-
isfactory results, this study first qualitatively assesses their performance on images that
may cause post-dehazing artifacts, as demonstrated in Figure 12. Regarding the haze-free
image in the first column of Figure 12, benchmark methods are unaware of whether it
is hazy or haze-free. Accordingly, they dehaze the haze-free image, which gives rise to
untoward distortion, as observed in the results reported by Tarel and Hautiere [8] and
Zhu et al. [49]. Meanwhile, the result presented by He et al. [6] is slightly darker than
the haze-free input, which is attributed to its well-recognized performance for indoor
images. However, on hazy images with a broad sky, the results reported by He et al. [6]
suffer from color distortion because the dark channel prior does not hold for sky regions.
The results that were published by Tarel and Hautiere [8] and Zhu et al. [49] also exhibit
color distortion for the mountain image in the fourth column. Additionally, halo artifacts
are observable in the results presented by Tarel and Hautiere [8], notably in the building
image in the second column. In contrast, the HDE-based dehazing algorithm is equipped
with hazy/haze-free discrimination ability. Therefore, it recognizes the haze-free image
and skips the dehazing process. Regarding hazy images, it produces satisfactory results
without any noticeable artifacts.
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Figure 12. A qualitative comparison of the HDE-based dehazing algorithm with state-of-the-art methods on real images.

Additionally, Table 7 provides the results of a comparative evaluation with those
three benchmark methods using full-reference and blind IQA metrics. For datasets with
ground-truth references, such as D-HAZY, O-HAZE, and I-HAZE, the feature similarity
index extended to color images (FSIMc) [53] and the tone-mapped image quality index
(TMQI) [54] are leveraged to quantitatively assess the dehazed images. The FSIMc scores
the image quality locally using two low-level features: phase congruency and image
gradient magnitude. It then weights these scores using the phase congruency and averages
the weighted scores to obtain a single score ranging between zero and unity. The higher
this score, the greater degree to which the dehazed image resembles the ground-truth
reference. Similarly, the TMQI also varies between zero and unity, in which the higher
score is favorable in image processing tasks. However, the TMQI assesses the image quality
based on the multiscale similarity index and the measure of naturalness.

The rate of new visible edges (e) and the quality of contrast restoration (r) are employed
as blind IQA metrics for the dataset without ground-truth references, such as IVC [55].
They are calculated using the visible edges, which were originally invisible in the input
image. These edges, in turn, are determined based on a pre-defined local contrast threshold.
Consequently, the e and r metrics are prone to spike-like noises, such as halo artifacts.
Hence, although higher e and r values are theoretically favorable, they should be considered
in conjunction with a qualitative evaluation for a reliable assessment.

The HDE-based dehazing algorithm is the second-best in terms of e and r, whereas
the best is the method that was proposed by Tarel and Hautiere [8], as demonstrated in
Table 7. Nevertheless, the results that are presented in Figure 12 have shown that this
method severely suffers from halo artifacts in fine detail, which contribute to its high e and
r values. Therefore, the HDE-based dehazing method is considered to be the best on the
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IVC dataset. On other datasets, it can be observed that four methods exhibit comparative
performance. Specifically, on the D-HAZY dataset, the method that was proposed by
He et al. [6] demonstrates the best performance, agreeing with the evaluation results that
were reported by Ancuti et al. [42]. Under the TMQI metric, the HDE-based dehazing
method is ranked second, third, and second on the D-HAZY, O-HAZE, and I-HAZE
datasets. Meanwhile, it is also ranked fourth, second, and first under the FSIMc metric.
This quantitative assessment, coupled with the qualitative evaluation mentioned above,
verifies the performance of the HDE-based dehazing method.

Table 7. The quantitative evaluation results of different dehazing methods on the IVC, D-HAZY, O-HAZE, and I-HAZE datasets.

Dataset IVC D-HAZY O-HAZE I-HAZE

Method

Metric
e r TMQI FSIMc TMQI FSIMc TMQI FSIMc

Tarel and Hautiere [8] 1.30 2.15 0.8000 0.8703 0.8416 0.7733 0.7740 0.8055

He et al. [6] 0.39 1.57 0.8631 0.9002 0.8403 0.8423 0.7319 0.8208

Zhu et al. [49] 0.78 1.17 0.8206 0.8880 0.8118 0.7738 0.7512 0.8252

HDE-based algorithm 1.04 1.57 0.8564 0.8621 0.8340 0.8218 0.7677 0.8517

5. Discussion

The proposed HDE is a knowledge-driven approach, which is, it does not require
any training on collected data prior to its deployment. By contrast, the FADE and DF
are data-driven approaches, wherein data collection for the pre-calculation of their local
parameters is essential. Specifically, an offline calculation for obtaining the mean vectors
and covariance matrices of the corresponding hazy and haze-free image corpora is indis-
pensable because the FADE estimates the haze density based on the Mahalanobis distance
in a haze-relevant feature space. Meanwhile, the DF estimates the haze density based on
the optical depth, which is the output of a regression model whose parameters are derived
from least-squares estimation on a synthetic training dataset. Figure 13 depicts the block
diagrams of these two benchmark evaluators and highlights the offline calculation in pink.
Conversely, the proposed HDE does not require any offline calculation. Instead, it estimates
the haze density directly from a single input image and it is more computationally efficient
and convenient.

Table 8 demonstrates the run-time comparison between three haze density evalua-
tors. The experimental results tabulated therein are measured in the MATLAB R2019a
environment, running on a computer with an Intel Core i7-9700 (3.0 GHz) CPU and 32 GB
RAM. In relation to the FADE and DF, the aforementioned offline calculation does not affect
the run-time, because it is performed in advance. Accordingly, the FADE and DF exhibit
relatively fast processing speeds. However, they are still slower than the proposed HDE.
On the one hand, the FADE’s time-consuming parts are haze-relevant feature extraction
and Mahalanobis distance calculation. The former extracts as many as twelve features,
despite the fact that some of them correlate with each other. Meanwhile, the latter is slow,
owing to matrix manipulation. On the other hand, although the DF has reduced the num-
ber of features through sensitivity and error analyses, it is still not as fast as the HDE due
to the use of mutual combinations between features in the regression model. In contrast,
the HDE is the fastest method among the three evaluators. This high speed is attributed to
the closed-form formula supporting haze density prediction from a single image.
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Figure 13. The block diagrams of two benchmark evaluators.

Table 8. Run-time in seconds of different haze density evaluators for various image sizes.

Evaluator
Image Size

640 × 480 800 × 600 1024 × 768 1920 × 1080 4096 × 2160

FADE 0.45 0.73 1.11 2.84 12.36

DF 0.10 0.18 0.27 0.70 3.12

HDE 0.07 0.12 0.18 0.41 2.06

Nevertheless, the three evaluators share some common drawbacks, such as FNs and
FPs, as illustrated in Figure 14a and Figure 14b, respectively. In Figure 14a, the FADE,
DF, and HDE have incorrectly classified thin-haze and night-time images as haze-free
images. In relation to the thin-haze image, it can be observed that the HDE value is
close to the decision value. Because the classification of images whose HDE value is
close to the decision value is ambiguous, the failure of the HDE is explicable. However,
the same interpretation does not hold for the FADE and DF. Regarding the night-time
image, incorrect classification is a typical shortcoming among three evaluators. One
possible reason is that the atmospheric light estimate utilized in the HDE’s calculation does
not reflect the heterogeneous illumination of night-time scenes. Therefore, it is determined
that utilizing the local estimate of atmospheric light may be a viable solution. In this
context, the local estimate can be obtained using the novel maximum reflectance prior, as
proposed by Zhang et al. [56,57] for night-time image dehazing. However, because a more
comprehensive investigation has to be done before discovering the exact reason, this failure
in night-time scenes is left for future studies.

Similarly, the FP cases presented in Figure 14b demonstrate that all three evaluators
have incorrectly classified haze-free images as hazy images. This failure occurs owing to
the large sky region and smooth background. These haze-like regions pose a challenging
problem for discriminating them from the actual hazy region. In that case, a thorough
investigation into the image’s cumulative distribution function may provide useful insights.
Moreover, leveraging semantic information may also be a viable alternative that is worthy
of further investigation. These valuable pieces of information can be used to guide the final
average pooling to produce a robust estimate. However, this issue also requires a more
detailed investigation in future studies, similar to the FN case on the night-time image.

Finally, Figure 14c illustrates some cases where the proposed HDE is superior to the
FADE and DF. It is clear that the two images that are depicted in Figure 14c are obscured
a considerable amount of haze. However, the FADE and DF have incorrectly classified
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these two as haze-free images with a substantial degree of confidence, as represented by
relatively large distances to the decision values. Conversely, the proposed HDE has yielded
TPs and, hence, is superior to the FADE and DF.
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Figure 14. A comparison of the proposed evaluator with state-of-the-art evaluators: (a) false-negative cases, (b) false-positive
cases, and (c) superior cases.

6. Conclusions

This paper presented an HDE for haze density estimation from a single image. The pro-
posed approach is knowledge-driven, as opposed to data-driven evaluators, such as the
FADE and DF. Firstly, a simple correlation and computation analysis was presented to
select image features that are highly pertinent to haze and are computationally efficient.
An analytically solvable objective function, whose optimization is analogous to maximizing
the image’s saturation, brightness, and sharpness, while minimizing the dark channel, was
then formulated from these features. Optimizing this objective function resulted in an
HDE’s closed-form formula. This paper also demonstrated three HDE-based applications,
including hazy/haze-free image classification, dehazing performance assessment, and sin-
gle image dehazing. In relation to the classification application, the experimental results
showed that the proposed HDE achieved an impressive accuracy of 96%, outperforming
the benchmark evaluators as well as human observers. Equipped with this superiority,
the proposed evaluator can accurately quantify the image’s haze density; consequently, it
can benefit the quantitative assessment of dehazing algorithms. Additionally, the proposed
evaluator and its byproduct (that is, the optimal transmission map) can be exploited to
improve dehazing algorithms’ performance in both hazy and clear weather conditions.

Nevertheless, a challenging problem arises when predicting the haze density of images
under specific circumstances, for example, hazy night-time images or haze-free images
containing a smooth background or a broad sky. This is attributable to the heterogeneous
illumination of night-time scenes or the low-frequency constituent components of a smooth
background or a broad sky. In addressing the former problem, leveraging the novel
maximum reflectance prior information to obtain a spatially adaptive estimate of the
atmospheric light might be a feasible solution. Meanwhile, a comprehensive investigation



Sensors 2021, 21, 3896 28 of 32

into the image’s cumulative distribution function and semantic information may provide
helpful insights into addressing the latter problem. However, there are strict requirements
for algorithmic complexity since haze density prediction and visibility restoration are
widely considered preprocessing steps in high-level applications. Therefore, we will
seek efficient and straightforward techniques to surmount those challenging problems in
future studies.
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Appendix A

This appendix provides details about the derivation of the scene radiance’s features
in Equations (21)–(23). Firstly, the scene radiance’s dark channel is derived while using
Equation (3), as follows:

Jdark(x) = min
y∈Ω(x)

[
min

c∈{R,G,B}
Jc(y)

]
, (A1)

= min
y∈Ω(x)

{
min

c∈{R,G,B}

[
Ic(y)−Ac

t(y)
+ Ac

]}
, (A2)

= min
y∈Ω(x)

{
minc∈{R,G,B} Ic(y)− A

t(y)
+ A

}
, (A3)

=
miny∈Ω(x)

[
minc∈{R,G,B} Ic(y)

]
− A

t(x)
+ A, (A4)

= A− A− ImΩ(x)
t(x)

, (A5)

where ImΩ(x) = miny∈Ω(x)

[
minc∈{R,G,B} Ic(y)

]
. In the above equations, two assumptions

regarding the transmission map and atmospheric light in Section 3.4 have been exploited
to simplify the derivation of Jdark. Regarding the transmission map, since it is a single
channel variable, there is no superscript c associated with t, leading to minc∈{R,G,B} t(y) =
t(y), as in the transformation from Equation (A3) to Equation (A4). The assumption
regarding its homogeneity in a local patch then results in miny∈Ω(x) t(y) = t(x), which
explains the transformation from Equation (A4) to Equation (A5). Simply put, the minimum
value of the transmission map in a local patch Ω(x) centered at x is t(x) itself because it
remains unchanged within Ω(x). Regarding the atmospheric light, since it is assumed that
AR = AG = AB = A, the transformation from Equation (A3) to Equation (A4) is explicable.
Additionally, because the atmospheric light is constant over the entire image, no spatial
coordinates are attached to it. This image-wise fixity also leads to miny∈Ω(x) A = A, as in
the transformation from Equation (A4) to Equation (A5).

https://doi.org/10.6084/m9.figshare.14729001.v1
https://doi.org/10.6084/m9.figshare.14729052.v1
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Using Equation (7), the product of saturation and value of the scene radiance is given,
as follows:

SV[J(x)] = max
c∈{R,G,B}

Jc(x)− min
c∈{R,G,B}

Jc(x), (A6)

= max
c∈{R,G,B}

[
Ic(x)−Ac

t(x)
+ Ac

]
− min

c∈{R,G,B}

[
Ic(x)−Ac

t(x)
+ Ac

]
, (A7)

=

 max
c∈{R,G,B}

Ic(x)

t(x)
− A

t(x)
+ A

−
 min

c∈{R,G,B}
Ic(x)

t(x)
− A

t(x)
+ A

, (A8)

=
1

t(x)

[
max

c∈{R,G,B}
Ic(x)− min

c∈{R,G,B}
Ic(x)

]
, (A9)

=
Imc(x)
t(x)

, (A10)

where Imc(x) = maxc∈{R,G,B} Ic(x)−minc∈{R,G,B} Ic(x).
Finally, the derivation of the scene radiance’s sharpness is self-explicable when con-

sidering it from a statistical perspective. Because the image sharpness is defined using the
measure of variability, as in Equations (14) and (15), the patch-wise fixity of the transmis-
sion map, the image-wise fixity of the atmospheric light, and the linearity of Equation (20)
altogether explain the derivation of the scene radiance’s sharpness.

Appendix B

This appendix provides the experimental results of using the decision value that
was determined in this study to classify new hazy/haze-free images. In this context,
these images are not in the datasets summarized in Table 1. Instead, they come from
two testing sets of the RESIDE dataset [58] and they consist of 1020 hazy images and
552 haze-free images. The results that are tabulated in Table A1 demonstrate that the
proposed HDE is still the best performing method, followed by the FADE and DF in
descending order. Furthermore, the source code and relevant data are publicly available at
https://github.com/v1t0ry/Haziness-degree-evaluator (accessed on May 8th, 2021) for
reproducing the reported results.

Table A1. Accuracy report for hazy/haze-free image classification task using haze density evaluators
on new data.

Class FADE DF HDE

DV 0.9866 0.2968 0.8811

P 1020
TP 863 242 929

TPR 84.6% 23.7% 91.1%
FN 157 778 91

FNR 15.4% 76.3% 8.9%

N 552
TN 446 508 507

TNR 80.8% 92.0% 91.9%
FP 106 44 45

FPR 19.2% 8.0% 8.1%

ACCΦ 83.3% 47.7% 91.4%

https://github.com/v1t0ry/Haziness-degree-evaluator
https://github.com/v1t0ry/Haziness-degree-evaluator
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