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Abstract: Existing image dehazing algorithms typically rely on a two-stage procedure. The medium
transmittance and lightness are estimated in the first stage, and the scene radiance is recovered in
the second by applying the simplified Koschmieder model. However, this type of unconstrained
dehazing is only applicable to hazy images, and leads to untoward artifacts in haze-free images.
Moreover, no algorithm that can automatically detect the haze density and perform dehazing on
an arbitrary image has been reported in the literature to date. Therefore, this paper presents an
automated dehazing system capable of producing satisfactory results regardless of the presence of
haze. In the proposed system, the input image simultaneously undergoes multiscale fusion-based
dehazing and haze-density-estimating processes. A subsequent image blending step then judiciously
combines the dehazed result with the original input based on the estimated haze density. Finally,
tone remapping post-processes the blended result to satisfactorily restore the scene radiance quality.
The self-calibration capability on haze conditions lies in using haze density estimate to jointly guide
image blending and tone remapping processes. We performed extensive experiments to demonstrate
the superiority of the proposed system over state-of-the-art benchmark methods.

Keywords: automation; self-calibration; dehazing; haze density; image blending; multiscale fusion

1. Introduction

Outdoor imaging is subject to environmental effects, such as lighting and weather
conditions. Therefore, captured images occasionally exhibit inconvenient characteristics
(for example, faint color, contrast reduction, and loss of details), posing practical difficulties
for image processing algorithms deployed in high-level vision applications. In real-world
scenarios, light scattering and diffusion in the turbid atmosphere are probably the most
common causes of image degradation. Researchers widely refer to these degradation
sources as haze, which comprises microscopic aerosols occurring naturally or originating
from industrial emissions. Recently, Pei et al. [1] investigated the effects of image degrada-
tion on object recognition and discovered that the accuracy decreased with increasing haze.
This discovery, coupled with the sheer impracticality of improving existing algorithms
to reverse the image degradation, requires image dehazing as a pre-processing step for
visibility restoration. Since then, owing to its promising potential in consumer photography
and computer vision applications, image dehazing has garnered significant importance,
attracting unceasing scientific attention over the previous decades. The current effort-
intensive trend towards development of autonomous vehicles (AVs) is a prime example.
For replacing the human driver, AVs must be equipped with state-of-the-art visual sensors
with all-weather reliability. However, this task is still unattainable because the elements
limit the functionality of even the most advanced sensors, rendering image dehazing very
relevant for overcoming this inevitable difficulty. Furthermore, according to The United
States Department of Transportation [2], nearly 22 percent of vehicle crashes occurring
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each year are weather-related, which calls for groundbreaking research to facilitate AV
operations in adverse weather [3].

Diverse algorithms ranging from simple histogram equalization to complex deep
neural networks have been proposed to address the limited visibility in hazy weather.
Among the existing methods, those based on optical physics are perhaps the most com-
monly encountered in the literature. However, they are dependent on certain assumptions
about the transmission medium to alleviate the ill-posed problem of image dehazing.
Consequently, the dehazing performance may suffer in case the imposed assumptions
fail. For example, the well-publicized dark channel prior (DCP) proposed by He et al. [4]
assumes that local image patches contain very dark pixels with approximately zero inten-
sity in at least one color channel. Notably, the DCP remains valid as long as the image
does not contain sky regions or shady objects. In the former condition, the presence of
high-intensity bright pixels in all color channels causes the breakdown of the DCP, whereas
in the latter, shadow conceals the actual pixel values, affecting its accuracy. Furthermore,
virtually all existing dehazing algorithms assume a homogeneous atmosphere, with con-
stant atmospheric light over the entire image. Although this assumption simplifies the
lightness estimation, it may result in post-dehazing artifacts in a heterogeneous atmosphere.
For example, hazy nighttime images typically contain several light-emitting sources, such
as streetlamps and billboards. Their effects on the imaging process must be considered for
accurate visibility restoration.

Another school of thought attempted to address the aforementioned issue by ap-
proaching image dehazing from the image enhancement perspective. In this context,
researchers focused on enhancing the fundamental aspects of perceptual image quality
such as contrast, sharpness, and colorfulness. One of the earliest attempts in this field
involved the exploitation of traditional image-processing techniques. Kim et al. [5] adopted
block-overlapped histogram equalization to enhance the image contrast, increasing the im-
age visibility significantly. Despite such an impressive contrast enhancement, this method
leaves the haze unaffected because it does not consider the hazy image formation. Subse-
quent research leveraged image fusion, which combines several images to produce a single
image that inherits the desirable characteristics from the source images. Ancuti et al. [6–8],
in a series of important studies in this field, adopted multiscale image fusion following the
Laplacian pyramid representation to dehaze the input image. More specifically, the sin-
gle hazy image and its variants (for example, white-balanced and semi-inverted images)
served as input data for the fusion process. Meanwhile, image features, such as saliency,
luminance, and chrominance, were exploited to generate guidance maps, which indicated
the spatial importance of the input data and thus specified the image regions to be selected
for fusion into the final result. Multiscale-fusion-based dehazing algorithms have demon-
strated perceptually satisfactory results while maintaining a considerably fast processing
speed. Notably, the multiscale fusion technique has broad application in other fields also
such as high-quality image generation [9] and low-light image enhancement [10].

Notwithstanding the concerted efforts and momentous achievements to date, dehaz-
ing algorithms in the literature are perceived to operate with a “static” approach; that is,
they always attempt to remove haze from the input image without even confirming its
existence. Accordingly, dehazing a haze-free image results in an apparent loss of visibility,
as illustrated in Figure 1, where Figure 1a is a haze-free image, and Figure 1b shows the de-
hazed version obtained by invoking the well-known algorithm proposed by Zhu et al. [11].
There is a noticeable fading in the fine details of grass and tree twigs, significantly re-
ducing the perceptual visibility. This type of untoward effect is caused by the lack of a
specialized evaluator that can inform the dehazing system about the proper time to de-
haze the input image. In other words, an automated image dehazing technique is needed
that can correctly detect both hazy and haze-free images. In this study, we propose an
automated dehazing system (AUDS) with self-calibration on haze conditions to fulfill the
aforementioned objective. Given an arbitrary input image, the AUDS produces a dehazed
version using a multiscale-fusion scheme. Simultaneously, the AUDS invokes the haziness
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degree evaluator (HDE) to quantify the image’s haze density, which serves as guidance for
ensuring a haze-condition-appropriate dehazing performance. Subsequently, the AUDS
employs image blending and tone remapping. The former combines the input image and
its dehazed version, and the latter is used to address dynamic range reduction. These two
processes are jointly guided by the previously estimated numerical haze density so that the
AUDS can attain the automated dehazing objective. In summary, the contributions of this
study are as follows:

• An automated scheme is proposed where image dehazing is combined with an HDE
to dehaze the input image regardless of the presence of haze.

• Efficient image processing techniques are utilized, such as multiscale fusion, image
blending, and tone remapping, to produce satisfactory results.

• A comparative evaluation is performed with well-publicized benchmark methods to
demonstrate the efficacy of the proposed AUDS.

(a) (b)
Figure 1. Visibility reduction when invoking image dehazing on a haze-free image. (a) Haze-free
image and (b) its corresponding dehazed result.

The remainder of this paper is organized as follows. Section 2 introduces the hazy
image formation, reviews the existing dehazing algorithms in the literature, and describes
the motivation for developing the AUDS. Section 3 describes the AUDS in detail by
presenting its constituent components. Section 4 provides the comparative experimental
assessment results of the AUDS and other state-of-the-art benchmark methods. Finally,
Section 5 concludes the study.

2. Literature Review

A short introduction to hazy image formation and the results achieved to date in
image dehazing is essential for lucidly understanding the concept of AUDS presented later.
Accordingly, we first describe the hazy image formation process in the atmosphere and
then briefly explore the turning points in the development of image dehazing techniques.
Finally, we present the motivation for developing the AUDS to provide an adequate context
for Section 3.

2.1. Hazy Image Formation

Contemporary researchers typically employ the simplified Koschmieder model [12]
to explain hazy image formation in the atmosphere. Under this model, the incoming
light waves encounter microscopic particles while traversing the transmission medium
to reach the image sensors, inducing atmospheric scattering that increases the captured
image luminance. In addition, the reflected light waves from the objects are also subject to
attenuation and scattering along the path to the image sensors. However, because modeling
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all these relevant factors is too complicated, the simplified Koschmieder model does not
consider the scattering of the reflected light waves, resulting in the following equation:

I(x) = J(x)t(x) + A[1− t(x)], (1)

where x denotes the spatial coordinates of the image pixels, I the hazy image, J the scene ra-
diance, t the medium transmittance (also known as the transmission map), and A the global
atmospheric light. The boldfaced representation indicates the wavelength-dependent char-
acteristics of the corresponding variables. On the one hand, because digital cameras are
typically equipped with red-green-blue (RGB) image sensors, I, J, and A accept values
belonging to RH×W×3, where H and W denote the height and width of the image, respec-
tively. On the other hand, t is a single-channel variable greater than zero and less than or
equal to unity, that is, t ∈ RH×W such that 0 < t ≤ 1. This variable is depth-dependent and
is expressed as t(x) = exp[−βd(x)], where β denotes the atmospheric extinction coefficient
and d is the scene depth. From this expression, we can observe that the transmittance
becomes zero as the scene depth approaches infinity. However, this scenario is non-existent
because of the limited imaging technology, which explains the aforementioned claim that
0 < t ≤ 1.

The terms J(x)t(x) and A[1− t(x)] are widely referred to as direct attenuation and
airlight, respectively. The former denotes the multiplicative attenuation of the reflected
light waves in the transmission medium, whereas the latter denotes the additive influ-
ence of atmospheric scattering. Accordingly, they are responsible for several hazy image
characteristics, such as faint color, reduced contrast, and loss of details. Additionally,
the existence of transmittance in these terms indicates its close correlation with the haze
density of the images. More specifically, the smaller the transmittance, the denser the haze,
and vice versa. Another unknown is the global atmospheric light, A. In the literature, this
variable is assumed to be constant as a corollary of the homogeneous-atmosphere postulate.
Consequently, A plays a less important role than t in the simplified Koschmieder model,
which may be why most studies focus on estimating the transmittance or the airlight.
The next subsection explores this matter in greater detail.

2.2. Related Work

As discussed in Section 1, image dehazing algorithms in the literature fall into two
main categories. Whereas those in the first category approach image dehazing from an
image enhancement perspective, including traditional histogram equalization and the
recently increasing use of image fusion, those in the second adopt an image restoration
perspective, modeling the hazy image formation using optical physics and manipulating
the model to recover the scene radiance. Hence, this subsection systematically reviews
pertinent research and summarizes the major turning points. A systematic review and
meta-analysis of this field is available in [13].

Histogram equalization (HE) is a simple and efficient image processing technique with
diverse applications, notably image contrast enhancement. Accordingly, researchers have
begun leveraging HE to alleviate the undesired atmospheric effects. Among the various
HE methods hitherto developed, the block-overlapped HE proposed by Kim et al. [5]
is considered efficient and practical because of being verifiable with consumer digital
cameras and surveillance cameras. However, researchers have shifted their attention to
image fusion because HE-based methods typically fail to consider haze-related degradation.
Image dehazing based on image fusion is an elegant solution because of its comparative
performance with image-restoration-based methods and fast processing speed. These ad-
vantages are accomplished by eliminating the complex estimation of the transmittance and
global atmospheric light, as will be discussed later. Recent studies have mainly focused on
multiscale fusion (fusing the images on multiple scales). Additionally, although multiscale
fusion is achievable by convolving the input image with different-sized kernels, convolving
the kernel with the input image and its downscaled versions is more efficient. This idea
was presented by Adelson et al. [14], and the word “pyramid” was used to denote the data
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structure representing the image information. In addition, the name Laplacian pyramid or
Gaussian pyramid is derived from the low-pass filtering kernel utilized to downsample
the original image.

Ancuti and Ancuti [7] adopted multiscale fusion using the Laplacian pyramid to
devise an image dehazing algorithm. They first obtained the white-balanced image and
the scaled mean-subtracted image from a single input. After that, they leveraged the
image luminance, chrominance, and saliency to compute the corresponding weight maps
for image fusion. Finally, the two derived images were fused according to the weight
maps using the Laplacian pyramid representation. Although this method can produce
satisfactory results, it may fail to handle images with non-uniform lighting conditions (for
example, nighttime scenes). Subsequently, Ancuti et al. [8] improved upon the previous
work [7] to address the aforementioned issue. By observing that global atmospheric light
is an inappropriate assumption for nighttime scenes, they proposed the estimation of the
patch-based atmospheric light using two different patch sizes. They interpreted that a
small patch size can capture non-uniform lightness, whereas a large patch size is more
appropriate for daytime scenes with almost uniform lightness. Consequently, two dehazed
versions corresponding to the two patch sizes, coupled with the discrete Laplacian of
the input image, were selected as input data for image fusion. The weight maps were
derived from the local contrast, saturation, and saliency. The final result was obtained
through multiscale fusion according to the Laplacian pyramid representation. The efficacy
of multiscale-fusion-based methods is the motivation for developing the dehazing part of
the AUDS, and details of this technique will be described in Section 3.2.

An in-depth exploration of image-restoration-based methods is also presented for
a comprehensive literature review. In the simplified Koschmieder model, input image
(I) is the single observation. Accordingly, the transmittance (t) and global atmospheric
light (A) are requisites for recovering the scene radiance (J). In the literature, existing
algorithms estimate them either separately or jointly (via airlight). The most notable
among them is probably the one based on the DCP of He et al. [4]. On the one hand,
they estimated the transmittance using two postulates: that the dark channel of the scene
radiance approximates zero and that the transmittance is locally uniform. Unfortunately,
the second postulate leads to blocking artifacts and requires computationally expensive
soft matting [15] for transmittance refinement. On the other hand, He et al. [4] proposed a
fairly robust scheme for estimating the global atmospheric light. They first selected the top
0.1 percent brightest pixels in the dark channel and then singled out the highest intensity
pixel in the RGB color space as the global atmospheric light. This estimation scheme is
relatively robust to the problem of incorrectly selecting bright objects (for example, white
cars) instead of the actual lightness. The dehazing approach proposed by He et al. [4] is
widely recognized as an efficient algorithm, albeit with two significant problems: high
algorithmic complexity and DCP breakdown in sky regions.

Tarel and Hautiere [16] lowered the algorithmic complexity by exploiting the filtering
technique known as the median of medians along a line to estimate the airlight. They
also postulated that the global atmospheric light is pure white after white-balancing the
input image. Consequently, they eliminated the need to estimate the global lightness.
As median filtering can be attained in a constant time [17], the algorithm proposed by
Tarel and Hautiere [16] exhibits a linear run-time complexity. However, despite the acceler-
ation in the processing rate, this algorithm is prone to halo artifacts because the median
filtering unintentionally smoothens the image edges. This problem can be overcome using
edge-preserving smoothing filters. The guided image filter [18] and its successors, namely
the weighted guided image filter [19] and globally guided image filter [20], are typical
examples. These filters are utilized to replace the soft matting in the algorithm proposed
by He et al. [4], resulting in significantly reduced algorithmic complexity. This profound
benefit is attributed to the local linear model describing the relation between the filtering
output and the guidance image. Consequently, the aforementioned filters can transfer
the guidance image’s structures to the filtering output while retaining the linear run-time
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complexity. Similar to Tarel and Hautiere [16], Alajarmeh et al. [21] devised a dehazing
framework with linear run-time complexity by virtue of the constant-time atmospheric
light and linear-time transmittance estimation. Nevertheless, this method is prone to the
color shift problem and incorrect selection of atmospheric light, as demonstrated by the
bluish sky in their reported results.

Researchers have also applied machine learning techniques, such as maximum like-
lihood estimates (MLE) and clustering, to image dehazing. For example, after extensive
observations on outdoor images, Zhu et al. [11] discovered the color attenuation prior
(CAP), which states that the scene depth correlates with the difference between the image
saturation and brightness. Accordingly, the CAP captures this correlation using a linear
model and estimates the model parameters through MLE. The transmittance can then
be easily calculated based on the scene depth. Meanwhile, the global atmospheric light
estimate is obtained utilizing a scheme similar to that of He et al. [4], except that the
scene depth replaces the dark channel. However, the CAP-based dehazing algorithm is
prone to background noise, color distortion, and post-dehazing false enlargement of white
objects. Ngo et al. [22] recently remedied these three problems using low-pass filtering,
adaptive weighting, and atmospheric light compensation, respectively. Notwithstanding
these improvements, this method delivers an unimpressive performance in dense haze
images. Other methods proposed by Tang et al. [23] and Ngo et al. [24] estimate the
transmittance from a set of haze-relevant features, using random forest regression and
heuristic optimization. Despite the impressive dehazing performance, the two methods
are computationally expensive, hindering their broad application. Similarly, Cho et al. [25]
estimated the transmittance by maximizing the local contrast while minimizing the number
of overshoots and undershoots. Although this method is relatively fast compared with
the previous two due to its efficient implementation, its strong dehazing power is subject
to color distortion. Another well-recognized strong dehazing algorithm is based on the
non-local haze-line prior [26], which states that a few hundred distinct colors can well
approximate the true colors of haze-free images. Nevertheless, this method is also prone to
color distortion.

Recently, researchers have leveraged deep learning techniques to recover scene ra-
diance in adverse weather conditions. The DehazeNet network, a pioneering attempt
by Cai et al. [27], was trained on a synthetic dataset to learn the mapping between the
input RGB image and its corresponding transmittance. For this purpose, the DehazeNet
architecture comprises three typical layers: feature extraction, multiscale mapping, and
nonlinear regression. Subsequent studies have focused on the relaxation of the supervised
learning scheme insofar as an unpaired real dataset can now be used to train the network.
On the one hand, Li et al. [28] developed a semi-supervised learning framework where the
designed network is jointly trained using two branches. The supervised branch follows
the typical supervised learning with a paired synthetic dataset, whereas the unsuper-
vised branch only exploits real hazy images to avoid data overfitting. On the other hand,
Chaitanya and Mukherjee [29] and Sun et al. [30] exploited a cycle-consistent adversarial
network, widely referred to as CycleGAN, to facilitate the use of unpaired datasets. No-
tably, Li et al. [31] leveraged zero-shot learning, currently in its infancy, to fully relax a
paired dataset requirement. They designed three networks that operate on the input image
to estimate the scene radiance, transmittance, and global lightness, respectively. They
then combined the results to produce an image resembling the original via the simplified
Koschmieder model. Thus, this method uses only the input image to train the networks for
predicting the scene radiance. However, the zero-shot learning framework substantially
prolongs the inference time, impeding real-time processing.

2.3. Motivation

The foregoing review summarized the main progress of image dehazing and dis-
cussed the major milestones of two approaches: image enhancement and image restoration.
Notably, image-restoration-based algorithms face a trade-off between complexity and
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restoration quality. On the one hand, deep-learning-based dehazing networks typically
deliver state-of-the-art performance; however, they require expensive computing plat-
forms for execution. Although Eyeriss-like research [32] on the efficient implementation
of deep neural networks has shown a few promising results, they are still inapplicable
to deep restoration networks. Real-time processing with energy efficiency is also cur-
rently considered unattainable. On the other hand, the dehazing method proposed by
Tarel and Hautiere [16] or Zhu et al. [11] is computationally friendly but suffers from other
image-quality-related problems, such as color distortion and halo artifacts. Accordingly,
in this study, we selected the multiscale fusion technique, whose efficacy in image dehazing
has been verified through various studies in the literature.

Moreover, existing algorithms commonly lack a pseudo-cognitive function to dehaze
the input image according to its haze density. As illustrated in Figure 1, the haze-free
image is significantly degraded when subjected to the dehazing algorithm developed by
Zhu et al. [11]. Similar degradation is also observed in other methods mentioned previously.
Hence, this observation motivated us to develop the proposed AUDS.

3. Proposed System

Figure 2 depicts the general block diagram of the proposed AUDS, where the input
image undergoes multiscale-fusion-based dehazing and HDE simultaneously. Image
blending then combines the dehazed result with the original input according to the haze
density estimate. Finally, the blended image undergoes luminance enhancement and color
emphasis, conducted within tone remapping. This process is also guided by the haze
density estimate, so that the final result exhibits good visibility regardless of the haze
condition of the input image. The following subsections describe AUDS’s constituent
components in greater detail.

Output

.

Haziness degree evaluator

Multiscale-fusion-based dehazing

Image blending

Input

Tone remapping

Figure 2. General block diagram of the automated dehazing system (AUDS), founded on multiscale-fusion-based dehazing,
haziness degree evaluator, image blending, and tone remapping.
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3.1. HDE

Researchers have largely ignored the prediction of an image’s haze density, and few
studies exist in the literature. Choi et al. [33] developed an indicator known as fog aware
density evaluator (FADE), predicting the haze density based on the measurable distances
between observed regularities in real hazy and haze-free images. They first collected hazy
and haze-free image corpora, each with 500 images. They then extracted twelve haze-
relevant features from these image corpora and fitted the features to multivariate Gaussian
models to establish corresponding ground-truth references. Thus, the derived mean vectors
and covariance matrices represent hazy and haze-free references. The FADE accepts a
single image and calculates the deviations from the previous references using Mahalanobis
distances, which are subsequently used to derive the haze density estimate. However,
the FADE values are not normalized, hindering their application in general circumstances.

Jiang et al. [34] proposed estimating haze density as a polynomial combination of
haze-relevant features. Initially, they exploited seven features, resulting in an excessively
complex model. They then leveraged sensitivity and error analyses to reduce the model
complexity, resulting in a final model with only three features. This model avoids the
problems observed in FADE by producing a haze density estimate ranging from zero to
unity. It should be noted that the haze density indicators developed by Choi et al. [33]
and Jiang et al. [34] are data-driven; that is, the delivered performance depends on the
collected image data for offline computation of internal parameters. More specifically,
FADE utilizes hazy and haze-free image corpora to establish ground-truth references for
haze density estimation, while Jiang et al. [34] relied on the collected data for estimating
the model parameters.

Recently, Ngo et al. [35] developed a knowledge-driven approach known as the HDE
for haze density estimation. They investigated nine haze-relevant features and selected
three, including the product of saturation and brightness, sharpness, and dark channel,
using a correlation and computation analysis. These features are computationally efficient
and differentiable and are used to formulate an analytically solvable objective function.
Optimizing this function yields a closed-form formula for predicting the haze density from
a single image. Ngo et al. [35] also conducted a comparative evaluation where the HDE was
compared with the aforementioned two evaluators in a hazy/haze-free image classification
task. The results demonstrated that the HDE exhibited an accuracy of approximately 96
percent, higher than that obtained using benchmark evaluators and human observers.
Additionally, they utilized the HDE as an assessment metric to evaluate the dehazing
algorithms. In this case, they compared their experimental results with those previously
reported by Galdran [36] and Ancuti et al. [37], validating the superiority of the HDE over
FADE. Above all, HDE computation is impressively fast, as evidenced by the run-time
comparison with the benchmark evaluators. Hence, we leveraged the HDE in this study to
estimate the haze density.

As illustrated by the simplified Koschmieder model, the scene radiance (J) of an
image (I) depends on the global atmospheric light (A) and transmittance (t). Addition-
ally, because A can be easily obtained from a single input image using the quad-tree
decomposition algorithm [38], J is dependent only on t. This dependence also applies to
the haze-relevant features extracted from J. Accordingly, Ngo et al. [35] formulated the
transmittance-dependent objective function [Obj(t)] as follows:

Obj(t) =
SVJ(t)σJ(t)

Jdark(t)
+ λR(t), (2)

where SVJ denotes the product of saturation and brightness, σJ the sharpness, Jdark the
dark channel, λ the regularization coefficient, and R(t) = 1/t the regularization term.
As described above, Ngo et al. [35] selected three haze-relevant features SVJ, σJ, and Jdark,
because they are differentiable. Consequently, the optimization problem is analytically
solvable, yielding a closed-form formula of the optimal transmittance (denoted as t̂), which
is fairly lengthy and then is deliberately omitted in this paper. Interested readers are



Sensors 2021, 21, 6373 9 of 26

referred to the previous study of Ngo et al. [35] for the full expression. The haze density
estimate (ρI) is then derived from t̂ using the following equation:

ρI =
1
|Ψ| ∑

∀x∈Ψ
[1− t̂(x)], (3)

where Ψ denotes the entire image domain, |Ψ| the total number of image pixels, and x the
pixel coordinates within the image (as mentioned in Section 2.1). This estimate (ρI) ranges
from zero to unity and is proportional to the haze density.

Figure 3 demonstrates a hazy image and its corresponding map that represents the
local haze density estimates. This map is the term (1− t̂) in Equation (3), and its values are
normalized for ease of visualization. It can be observed that the map is closely correlated
with the actual haze concentration of the hazy image because three distinct hazy regions
are easily noticeable. More precisely, Figure 3b demonstrates that the haze concentration
increases along with the scene depth, as witnessed by the corresponding increase in the
local haze density estimates. For convenience, the proposed AUDS only utilizes the average
value ρI to represent the haze density estimate of the input image. Accordingly, ρI facilitates
the proposed AUDS to guide the image blending and tone remapping processes to obtain
a satisfactory result appropriate to the haze condition.

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)
Figure 3. Illustration of haze density estimation. (a) Hazy image and (b) its corresponding map
depicting the local haze density estimates.

3.2. Dehazing Using Under-Exposure and Image Fusion

As discussed earlier, multiscale fusion combines several images according to guid-
ance maps to produce an image with desirable characteristics. In single-image dehazing
algorithms, a single input is used to obtain multiple images for the fusion process. For
that purpose, Galdran [36] proposed the idea of using under-exposed images. However,
because under-exposure is related to a physical adjustment of the camera lens to control the
light entering the aperture, gamma correction was leveraged to artificially under-expose
the input image. This simple technique is expressed by a power-law relationship, where the
output varies with the input power. Assuming that the image data are normalized between
zero and unity, the power (denoted as γ) defines three operation modes corresponding to
γ > 1, γ = 1, and γ < 1, representing under-exposure, non-mapping, and over-exposure,
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respectively. As illustrated in Figure 4, the under-exposed images obtained with γ = 2 and
γ = 3 exhibit a global reduction in the image intensities. Consequently, objects obscured by
haze become noticeable, as depicted in the red-cropped patch. Conversely, the dark details
in the blue-cropped patch fade away, which is an undesirable side effect. Hence, selectively
fusing these under-exposed images can considerably improve the visibility of hazy images.

(a) (b) (c)
Figure 4. Illustration of under-exposure’s effects on the hazy image. (a) Hazy image and its corresponding under-exposed
results with (b) γ = 2 and (c) γ = 3.

Furthermore, Galdran [36] leveraged contrast-limited adaptive histogram equalization
(CLAHE) to generate an additional input to the fusion process. This contrast-enhanced
input balances the side effect of the gamma correction mentioned above. However, CLAHE
may leave blocking artifacts in the dark image. Ngo et al. [39] improved upon the artificial
under-exposure by utilizing detail enhancement followed by gamma correction. In this
context, the former enhances the object contours obscured by the haze layer, while the latter
generates detail-enhanced under-exposed images. The corresponding guidance maps are
derived from the dark channel owing to their strong correlation with the haze distribution.
Nevertheless, as Ngo et al. [39] concentrated their efforts on real-time hardware design,
they merely employed single-scale image fusion. In this study, we adopted a dehazing
procedure similar to Ngo et al. [39], except for the use of multiscale fusion. The number of
scales (N) was set as large as possible, according to Equation (4), to maximize the beneficial
effects, wherein min(·) yields a smaller value between image height (H) and width (W).
As a result, the multiscale-fusion-based dehazing process produces a dehazed image (J)
directly from the input image (I).

N = blog2[min(H, W)]c. (4)

Mathematically, it is assumed that K is the number of under-exposed images. The in-
put pyramid is then defined as {Ik

n|k, n ∈ Z, 1 ≤ k ≤ K, 1 ≤ n ≤ N}, where images at
the first scale (n = 1) are obtained using gamma correction, as defined by {Ik

1 = Iγk |γk ∈
R, γk ≥ 1}. Images at the remaining scales (n > 1) are generated using the following
equation:

Ik
n = d2

(
Ik

n−1

)
, (5)

where d2(·) denotes the down-sampling operation by a factor of two. Next, the Laplacian
pyramid can be constructed by adopting the inversion procedure. At the last scale (n = N),
the Laplacian image is defined as Lk

N = Ik
N . At the remaining scales (n < N), the corre-

sponding Laplacian image is defined by Equation (6), where u2(·) denotes the up-sampling
operation by a factor of two.

Lk
n = Ik

n − u2

(
Ik

n+1

)
. (6)

As introduced previously, we utilized the dark channel prior [4] to calculate the
guidance map. For images at the first scale, the corresponding guidance map is defined
as below:

Wk
1 = 1− min

y∈ΩMFD(x)

{
cmin

[
Ik

1(y)
]}

, (7)
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where miny∈ΩMFD(x)(·) denotes the spatially minimum filtering operation over the square
patch ΩMFD(x), which is centered at the pixel location x. Meanwhile, the inner symbol
cmin(·) denotes the channel-wise minimum operation. The remaining guidance maps
can be easily obtained for images at other scales (n > 1) by applying the down-sampling
operation recursively, as expressed by Wk

n = d2(Wk
n−1). After that, the guidance maps

at individual scales are normalized according to Equation (8) to avoid the out-of-range
problem.

W̃k
n =

Wk
n

∑K
k=1 Wk

n
. (8)

Then, all K images are multiplied with K corresponding guidance maps at each scale,
and the multiplication results are summed up together. Accordingly, this step yields
N temporary results (denoted as Tn = ∑K

k=1 W̃k
nLk

n) at N different scales. Concerning
the smallest scale (n = N), the corresponding fusion result is defined as JN = TN =

∑K
k=1 W̃k

NLk
N . From the (N − 1)th scale to the first scale (N − 1 ≥ n ≥ 1), the fusion results

Jn are as follows:
Jn = u2(Jn+1) + Tn. (9)

Generally, the desirable fusion result is the one at the first scale, that is, J1. So, the
dehazed image produced by the multiscale-fusion-based dehazing method is J = J1.
Figure 5 below demonstrates a simple multiscale fusion process using two under-exposed
images illustrated in Figure 4b,c. These two images are denoted as I1

1 and I2
1, respectively.

It can be observed that I1
1 possesses a clearer foreground than I1

2, whereas its background
is hazier than that of I1

2. As a result, the corresponding guidance maps demonstrate that
the fusion process combines the foreground of I1

1 with the background of I1
2, yielding a

satisfactorily fused image with improved visibility.

+ × × +

× ×

+

+

+

+ +

– –

𝑑2 ∙ 𝑑2 ∙𝑢2 ∙ 𝑢2 ∙

𝑢2 ∙

First image Second image

𝐈1
1

𝐈2
1 = 𝑑2 𝐈1

1

𝑢2 𝐈2
1

𝐈1
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2 = 𝑑2 𝐈1
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𝑢2 𝐈2
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𝑢2 𝐉2
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2 𝐋1

2

𝐋2
1 W2

1 W2
2 𝐋2

2

Fusion result

Figure 5. Illustration of multiscale image fusion. The two input images were under-exposed using γ = 2 and γ = 3.
The symbols u2(·) and d2(·) denote the up- and down-sampling operations by a factor of two.

The following image blending process operates on the input image (I), haze density
estimate (ρI), and dehazed image (J) to produce a blended image unaffected by weather-
related degradation. In this context, the ρI value is used to generate a haze-condition-
appropriate ratio for mixing I and J; hence, image blending is self-calibrated.
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3.3. Image Blending

Image blending is a simple technique wherein the color values of two images are
combined according to a pre-determined percentage. The result then exhibits the desirable
characteristics of the two source images. In other words, image blending can be considered
a special case of image fusion, where the fusion is conducted on a single scale using constant
weight maps. This simple technique has also been utilized for frame interpolation in early
television technology. Accordingly, we leveraged the image blending technique to combine
the original input (I) and its dehazed version (J) to obtain a hazy-weather-unaffected
result. The corresponding amalgamation ratio of I to J is determined using the hazy
density estimate (ρI) obtained via the HDE’s execution on I. As an intuitive description, we
relied on ρI to classify the input image as “haze-free”, “mildly hazy”, “moderately hazy”,
or “densely hazy”. The image blending step results in one of the following outputs:

• An input image if the haze condition is “haze-free”.
• A dehazed image if the haze condition is “densely hazy”.
• A linear combination of the input image and its dehazed version if the haze condition

is either “mildly hazy” or “moderately hazy”.

As ρI lies between zero and unity, two user-defined thresholds, ρ1 and ρ2, can be used
to divide the value range into three regions: haze-free, hazy, and densely hazy, correspond-
ing to ρI < ρ1, ρ1 ≤ ρI ≤ ρ2, and ρI > ρ2, respectively. Hazy images are then further
classified into mildly and moderately hazy, consistent with the haze conditions defined
above. On the one hand, we utilized the threshold value determined by Ngo et al. [35] as
ρ1 because it has been used to classify hazy/haze-free images. On the other hand, the value
of ρ2 was determined as the mean HDE value of the hazy image corpora, as summarized
in Table 1. IVC [40], FRIDA2 [41], D-HAZY [37], O-HAZE [42], I-HAZE [43], and Dense-
Haze [44] are well-publicized datasets that are widely used to evaluate image dehazing
algorithms. FINEDUST [24] and 500IMG [22], in contrast, are self-collected datasets from
our previous work. Therefore, the values of ρ1 = 0.8811 and ρ2 = 0.9344 were used in
this study to produce the results presented later. Additionally, the aforementioned image
blending output can be rewritten as follows:

• The blended result is the input image if ρI < ρ1.
• The blended result is the dehazed image if ρI > ρ2.
• The blended result is a linear combination of these two images if ρ1 ≤ ρI ≤ ρ2.

Table 1. Summary of real and synthetic datasets employed in this study. NA stands for not available.

Dataset Type Hazy Images (#) Haze-Free Images (#) Ground Truth

IVC Real 25 NA No
FRIDA2 Synthetic 264 66 Yes
D-HAZY Synthetic 1472 1472 Yes
O-HAZE Real 45 45 Yes
I-HAZE Real 30 30 Yes
FINEDUST Real 30 NA No
500IMG Real NA 500 No
Dense-Haze Real 55 55 Yes

For the two extremes (ρI < ρ1 and ρI > ρ2), the proposed AUDS classifies the input
image as haze-free or densely hazy. It then maximizes or minimizes the contribution of
the input image to the blended result accordingly. In other words, the AUDS sets the
percentages for the input image and its dehazed version in the image blending step to
(100%, 0%) or (0%, 100%), respectively. In the remaining case (ρ1 ≤ ρI ≤ ρ2), the AUDS
treats the input image as mildly or moderately hazy. It then determines the blending
percentages so that both the input image and its dehazed version contribute to the blended
result. Therefore, it is essential to map the values of [ρ1, ρ2] to [0, 1] for facilitating this
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determination. The mapping is conducted by applying Equation (10), where ρ̂I denotes the
mapped values of ρI, and α is a user-defined positive parameter controlling the shape of the
mapping curve. For haze-free and densely hazy images, the corresponding ρ̂I values are
mapped to zero and unity, respectively. For hazy images whose ρI values lie between the
two thresholds, the mapping is generalized using α while ensuring that the corresponding
ρ̂I values range from zero to unity. As will be described shortly, α controls the degree
to which the image blending transfers the input image and its dehazed version to the
blended result.

ρ̂I =


0 ρI < ρ1(

ρI − ρ1

ρ2 − ρ1

)α

ρ1 ≤ ρI ≤ ρ2.

1 ρI > ρ2

(10)

The blending weight (or percentage) is then generated from ρ̂I as follows:

ω = (1− ρ̂I)
θ , (11)

where ω denotes the blending weight associated with the input image (I), and θ is a
user-defined positive parameter controlling the contribution ratio of the involved images.
The image blending step is then conducted using Equation (12), where B denotes the
blended result. Figure 6 provides a more intelligible description of the general block
diagram in Figure 2 by incorporating the information presented so far, including two
graphs for Equations (10) and (11), respectively. As the blending step combines the input
image and its corresponding dehazed version, the contribution ratio is crucial for producing
satisfactory results. However, the highly subjective perception of image quality induced us
to use two user-defined parameters α and θ. The former implicitly controls the contribution
ratio via ρ̂I, whereas the latter’s effect is explicit, as shown in Equation (11). Accordingly,
users can fine-tune the AUDS to obtain preferable results. For example, the AUDS may
exhibit a weak dehazing power on bright and mildly hazy images because bright details
are affected by both haze and probable over-illumination. Therefore, a viable solution is to
increase the contribution of the dehazed image under these circumstances. As illustrated
in Figure 6, the mapping curve corresponding to α = 0.2 was utilized in this study to
yield high ρ̂I values for mildly hazy images. Accordingly, the blending weight generation,
expressed by Equation (11), results in low ω values, signifying that more information from
the dehazed image is transferred into the blended result. It should also be noted that the
three terms—percentage, weight, and ratio—and their corresponding representations have
been used interchangeably in this study. For example, the blending percentages (70%, 30%)
are analogous to the blending weights (0.7, 0.3) and the contribution ratio 7:3.

B = ωI + (1−ω)J. (12)

As described in Section 4.4, we assumed an empirical configuration of (α, θ) = (0.2, 0.4)
after extensive experiments on both real and synthetic image datasets. The corresponding
curves representing the range mapping and blending weight generation are illustrated
by the dashed blue lines in Figure 6. If the numerical haze density of the input image is
less than ρ1 (that is, the input image is haze-free), the mapped value ρ̂I is zero. This value
results in the weight ω = 1; hence, B = I signifies that the blended result is the input
image. Conversely, if the numerical haze density of the input image is greater than ρ2
(that is, the input image is densely hazy), the mapped value is one. This value results in
the weight ω = 0, signifying that the blended result is the dehazed image, that is, B = J.
In the final case, when the numerical haze density of the input image falls between ρ1
and ρ2 (that is, the input image is mildly or moderately hazy), the mapped value ranges
between zero and unity. The higher mapped value results in a smaller weight, signifying
that the contribution of the input image to the blended result is less than that of its dehazed
version. Therefore, the proposed AUDS delivers satisfactory performance under all haze
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conditions. We utilized the aforementioned configuration of (α, θ) in this study to ensure
that the contribution ratio of the input image and its dehazed version under mildly and
moderately hazy images was approximately 7:3 and 5:5, respectively.

Furthermore, Figure 6 illustrates that the mapped value (ρ̂I) is also input to the tone
remapping block. The next subsection describes how this value is utilized to guide the tone
remapping process in more detail.
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Figure 6. Detailed block diagram of the AUDS demonstrating the exploitation of haziness degree evaluator to guide image
blending and tone remapping.

3.4. Tone Remapping

Image dehazing is fundamentally the subtraction of the haze layer from the input
image. Therefore, the dehazed image is typically prone to dynamic range reduction,
probably caused by overflows and underflows resulting from arithmetic operations in the
restoration process. Hence, tone remapping is considered an efficient post-processing step
for extending the reduced dynamic range. We leveraged the adaptive tone remapping
(ATR) proposed by Cho et al. [45] to perform both luminance enhancement and color
emphasis. These two operations are mathematically defined in Equations (13) and (14),
where Le denotes the enhanced luminance, L the luminance derived from the blended
image B, GL the luminance gain defined as a nonlinear function based on the cumulative
distribution of L, and WL the adaptive luminance weight defined as a simple linear function
of L. A similar description is applicable to color emphasis in Equation (14), except that
the constant 0.5 denotes an offset to convert the zero-centered chrominance back to the
normalized range.

Le(x) = L(x) + GL(x)WL(x), (13)

Ce(x) = C(x) + GC(x)WC(x) + 0.5. (14)
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We utilized the mapped value ρ̂I calculated previously to modify the ATR so that
this post-processing step is also guided (or self-calibrated) by the haze condition of the
input image. As Cho et al. [45] conducted color emphasis in proportion to the luminance
enhancement by defining GC = C · Le/L, modifying the adaptive luminance weight WL
suffices for the stated purpose. Specifically, ρ̂I is multiplied with the adaptive luminance
weight such that WL in Equation (13) is replaced by ρ̂IWL. As a result, if the input image
is haze-free (ρ̂I = 0), the modified adaptive weight becomes zero, allowing the ATR to
bypass the blended image, which is the original haze-free image. In contrast, if the input
image is densely hazy (ρ̂I = 1), the ATR fully performs luminance enhancement and color
emphasis, as described by Equations (13) and (14), respectively. If the input image is mildly
or moderately hazy (0 < ρ̂I < 1), the added term ρ̂I modifies the adaptive weight WL
according to the haze density. Therefore, the ATR appropriately enhances the luminance
and emphasizes the color insomuch that the final result exhibits satisfactory enhancement
quality. Mathematically, the image’s haze density is proportional to the value estimated
by the HDE (ρI) and its mapped value ρ̂I. As a result, the denser the haze, the larger the
ρ̂I value, which increases the contribution of the dehazed image to the blended result.
This increase darkens the blended image and may cause untoward distortion. Hence,
the modified adaptive weight ρ̂IWL can compensate for this problem by using the mapped
value ρ̂I.

4. Experimental Results

This section presents the results of the experimental assessment conducted on the
proposed AUDS and other state-of-the-art benchmark methods, including those proposed
by Tarel and Hautiere [16], He et al. [4], Ngo et al. [39], Zhu et al. [11], Berman et al. [26],
Cho et al. [25], Cai et al. [27], and Ren et al. [46], in terms of qualitative and quantitative
performance. In the upcoming sections, we will refer to these benchmark methods by their
abbreviation, which can found in Table 2.

Table 2. Summary of benchmark algorithms utilized in this study.

Proposed by Abbreviation Description

Tarel and Hautiere [16] FFD Fast filtering operation
He et al. [4] DCP Dark channel prior
Ngo et al. [39] sIFD Single-scale image fusion
Zhu et al. [11] CAP Color attenuation prior
Berman et al. [26] NLD Non-local haze-line prior
Cho et al. [25] MBD Multi-band decomposition
Cai et al. [27] DehazeNet Convolutional neural network
Ren et al. [46] MSCNN Multiscale convolutional neural network

4.1. Parameter Configuration

The proposed AUDS comprises four main components as illustrated in Figure 2:
multiscale-fusion-based dehazing, HDE, image blending, and tone remapping. Each con-
stituent component, in turn, can be configured using a particular set of parameters. There-
fore, this subsection summarizes the AUDS parameters and provides their corresponding
empirical values to help researchers to reproduce the presented experimental results.

As mentioned in Section 3.2, we leveraged the image-fusion-based dehazing method
proposed by Ngo et al. [39], except the multiscale approach to image fusion. This image
dehazing method comprises the following operations: sharpness enhancement, artificial
under-exposure via gamma correction, guidance weight generation, and image fusion.
First, the sharpness enhancement is conducted on the input image according to the local
variance, which is exploited to determine the degradation degree of local patches. In this
context, a pair of variance thresholds (ν1, ν2) defines the three degradation degrees: heavy,
moderate, and slight. A corresponding pair of scaling factors (κ1, κ2) then defines the extent
to which sharpness enhancement will be conducted. In this study, we utilized the empirical
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values suggested by Ngo et al. [39] to configure the four parameters {ν1, ν2, κ1, κ2}. Next,
the artificial under-exposure is attained via gamma correction, expressed by a power-law
relation b = aγ, where a and b denote image data normalized to the range [0, 1], and the
positive values γ ≥ 1 denote under-exposure. At this stage, the number of artificially
under-exposed images K must be defined first. The corresponding values γk, where
k ∈ Z ∩ [1, K], are then determined to perform the gamma correction. The quality of
the dehazed image is proportional to the number of artificially under-exposed images K.
However, K is constrained by the limited representation of discrete data in digital systems.
In other words, gamma values γk are upper-bounded because very small image intensities
resulting from large gamma values may be represented by the same quantization level.
Therefore, in this study, we empirically determined K = 8 and the corresponding gamma
values γk where k ∈ Z∩ [1, 8]. In the next step of guidance weight generation, the single
user-defined parameter is the patch size ΩMFD to calculate the dark channel.

The HDE for estimating the image’s haze density is equipped with three user-defined
parameters: regularization coefficient λ, emphasis strength γHDE, and patch size ΩHDE.
The regularization coefficient is introduced into the HDE to ensure that the estimated
haze density lies between zero and unity. Meanwhile, the power-law expression b = aγ

mentioned above is leveraged for its proven performance boost to the HDE, resulting in a
remarkable accuracy of 96 percent in the hazy/haze-free image classification tasks [35]. It
is also necessary to define the patch size because the HDE computation includes filtering
operations resulting from the involvement of the dark channel and sharpness.

The remaining two components (that is, image blending and tone remapping) are
guided by the haze density estimate resulting from the HDE’s execution. This procedure
involves four user-defined parameters, including a pair of thresholds (ρ1, ρ2) and two
power values (α, θ). These parameters are used for range mapping and blending weight
generation, as described in Section 3.3. Table 3 provides a summary of all the user-defined
parameters and their corresponding empirical values. This parameter configuration was
used to generate all the experimental results discussed later.

Concerning other benchmark algorithms, their authors also share the source codes
together with corresponding parameter configurations for reproducibility. Therefore, we
utilized these software implementations and retained the provided parameter configura-
tions in the following performance assessment.

Table 3. Employed parameters and their corresponding empirical values.

Component Parameters Empirical Values Description

Multiscale-
fusion-based
dehazing

K 8 Number of artificially under-exposed images
{ν1, ν2, κ1, κ2} {0.001, 0.01, 2.5, 1} Scaling factor generation in sharpness enhancement
{γ1, γ2, γ3, γ4, {1, 1.13, 1.2, 1.3, Gamma values in artificial under-exposure

γ5, γ6, γ7, γ8} 1.5, 2.83, 2.93, 3}
N Equation (4) Number of scales in multiscale fusion
ΩMFD 3× 3 Patch size for weight map calculation

Haziness degree
evaluator

λ −1 Regularization coefficient
γHDE 1/9 Emphasis strength for intensity emphasis
ΩHDE 5× 5 Patch size

Image blending
and tone
remapping

{ρ1, ρ2} {0.8811, 0.9344} Thresholds for range mapping
α 0.2 Coefficient controlling range mapping curve
θ 0.4 Coefficient controlling weight generation curve

4.2. Qualitative Comparison of Hazy Images

This subsection discusses the comparative dehazing performance of the proposed
AUDS and eight benchmark methods on mildly, moderately, and densely hazy images
from the eight datasets listed in Table 1. The AUDS, equipped with the HDE, can quantify
the image’s haze density and then guide the image blending and tone remapping processes
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to generate a haze-condition-appropriate result. This simple but efficient addition gives
the AUDS a definite advantage over benchmark methods. Specifically, FFD, DCP, NLD,
and MBD generally exhibit strong dehazing power, which is beneficial for densely hazy
images but not for mildly and moderately hazy images. Notably, in the results of FFD,
halo artifacts manifest themselves around fine edges, significantly impairing the image
quality. The machine-learning-based CAP also overly dehazes mildly and moderately
hazy images, causing color distortion and a probable loss of dark details. Meanwhile,
the deep-learning-based DehazeNet and MSCNN can alleviate the previously observed
problems to a certain extent, attributable to the powerful representation capability of deep
neural networks. These two methods can extract various image features and combine
them nonlinearly to estimate the medium transmittance; hence, they can handle images
with various haze conditions. Nevertheless, they are prone to the domain shift problem
owing to the lack of real training datasets. This observation is validated by the qualitative
evaluation results presented below.

Figure 7 illustrates the qualitative comparison results under different haze conditions.
The numerical haze density ρI can be considered in conjunction with the threshold values
{ρ1, ρ2} = {0.8811, 0.9344} to verify the haze condition of the corresponding input image.
For this comparison, we consider the first three columns of the figure that depict real scenes
degraded by mild, moderate, and dense haze. It should be noted that results of FFD, DCP,
CAP, DehazeNet, and MSCNN in the second column are adopted from Ngo et al. [13].

The results of FFD, DCP, CAP, NLD, and MBD exhibit different types of distortion,
ranging from the less noticeable loss of details to the apparent color distortion or halo
artifacts. The results of DehazeNet and MSCNN, in contrast, are more favorable to human
perception because of a significant reduction in dehazing-induced side effects. However,
despite exploiting computation-intensive deep models, the untoward distortion persists,
albeit not as severely as those in previous methods. For sIFD and the proposed AUDS, it
can be observed that they deliver acceptable performance in all three cases, although their
dehazing power is not as strong as that of NLD and MBD. Additionally, the results of AUDS
exhibit higher visibility than those of sIFD, attributed to the self-calibrated image blending
and tone remapping. The HDE is highly accurate, resulting in an appropriate weight for
guiding those two processes to produce a desirable result. As illustrated in the last row of
Figure 7, the dehazing results are visually satisfactory without any unpleasant artifacts.

4.3. Qualitative Comparison of Haze-Free Images

This subsection completes the aforementioned comparison by considering the case of
haze-free input images. As benchmark methods lack the ability to detect the existence of
haze, they dehaze even the haze-free images, resulting in an apparent degradation in image
visibility. For example, the fourth column of Figure 7 demonstrates a qualitative comparison
of a real haze-free scene. Except for the proposed AUDS, all eight benchmark methods
exhibit dehazing-induced degradation, such as loss of dark details or color distortion.
Specifically, the results of FFD, DCP, sIFD, CAP, NLD, and MBD exhibit a significant
reduction in image intensity, causing a loss of dark details. In contrast, comparatively
milder problems are observed in the results of DehazeNet and MSCNN, which is attributed
to a large number of informative features learned by the deep neural network. However,
this type of degradation poses certain practical difficulties in high-level vision applications
such as object recognition, localization, and smart surveillance.

Unlike benchmark methods, the proposed AUDS is haze-aware; that is, it can perceive
the existence of haze in input images and perform image dehazing appropriately. This
desirable course of action results from using the HDE to jointly guide the image blending
and tone remapping processes. In particular, image blending combines the input image and
its dehazed version in a specific ratio determined by the haze density estimate. For example,
the proposed AUDS correctly classifies the input image shown in the fourth column of
Figure 7 as a haze-free image because the haze density estimate ρI = 0.7863 is less than the
threshold ρ1 = 0.8811. Accordingly, the blending weights are set as (1, 0) to transfer the
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entire input image into the blended result. Additionally, as the mapped value ρ̂I is zero,
the tone remapping step bypasses the blended result, keeping the input image unchanged
throughout the proposed AUDS.

Nevertheless, Ngo et al. [35] discovered that the HDE incorrectly classifies images
with large and homogeneous backgrounds (for example, sky, sea, and lake) as hazy images.
Owing to this drawback of the HDE, image blending and tone remapping may transfer
most of the dehazed image into the final result, possibly causing untoward degradation,
such as color distortion and a loss of dark details. For example, in the last column of
Figure 7, although the input image is haze-free, it contains a large dim sky. Consequently,
the HDE incorrectly quantifies its haze density as ρI = 0.8899, which is larger than the
threshold ρ1 = 0.8811. Hence, the haze-free image is considered a mildly hazy image,
and the proposed AUDS attempts to restore the image visibility instead of leaving it
unchanged. However, because the HDE classifies the input image as a mildly hazy image,
the result does not exhibit any noticeable degradation. Notably, the results of the proposed
AUDS demonstrate clearer visibility compared with the input image. In contrast, other
benchmark methods display undesirable degradation to different extents, ranging from
the slight luminance reduction in the result of CAP to severe color distortion in those of
FFD, DCP, sIFD, NLD, MBD, DehazeNet, and MSCNN. Hence, the qualitative comparison
results in Figure 7 demonstrate the superiority of AUDS over the eight benchmark methods
with five cases: (a) mildly, (b) moderately, (c) densely, (d) haze-free, and (e) failure.

(a) Mildly
ρI = 0.8850

(b) Moderately
ρI = 0.9032

(c) Densely
ρI = 0.9604

(d) Haze-free
ρI = 0.7863

(e) Failure
ρI = 0.8899

Input image

FFD

DCP

sIFD

Figure 7. Cont.
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DehazeNet

MSCNN

AUDS

Figure 7. Qualitative comparison of the proposed AUDS with state-of-the-art benchmark methods on different images.
Results of FFD, DCP, CAP, DehazeNet, and MSCNN in the (b) column are adopted from Ngo et al. [13].

4.4. Quantitative Comparison

Subjective ratings obtained from human observers provide the most accurate eval-
uation of image processing algorithms. However, despite the high reliability, obtaining
subject-rated scores is a laborious and unrepeatable task. Therefore, image quality assess-
ment (IQA) metrics have been developed to address this problem. Although IQA metrics
do not necessarily correspond to human visual standards, they are adequately reliable.
Additionally, an objective assessment using IQA metrics, coupled with the aforementioned
qualitative assessment, is widely considered a thorough evaluation.

In this study, we utilized the tone-mapped image quality index (TMQI) and the feature
similarity index extended to color images (FSIMc), proposed by Yeganeh and Wang [47] and
Zhang et al. [48], respectively, to quantitatively assess the dehazing performance of all nine
methods. The TMQI assesses the multiscale structural fidelity and statistical naturalness,
and TMQI values are bounded between zero and unity. Higher TMQI values signify
that the dynamic range of the restored image shows greater resemblance with that of the
ground-truth image. The FSIMc can be considered an upgrade of the structural similarity
proposed by Wang et al. [49] because it incorporates chrominance into its computation.
This IQA metric is also bounded between zero and unity, with a preference for high values
in image restoration tasks.
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Table 4 tabulates the quantitative results on real (O-HAZE, I-HAZE, Dense-Haze,
and 500IMG) and synthetic (FRIDA2 and D-HAZY) datasets. Except the 500IMG, these
datasets contain hazy images and their corresponding haze-free references. Firstly, concern-
ing hazy images, the performance delivered by the proposed AUDS is comparable with
that of the best-performing method in each dataset. More specifically, on FRIDA2, D-HAZY,
O-HAZE, I-HAZE, and Dense-Haze datasets, the proposed AUDS demonstrates FSIMc
scores lower than those of the corresponding best method by 0.14%, 3.52%, 0.87%, 0.42%,
and 14.24%, respectively. Meanwhile, the differences in TMQI scores are 6.00%, 10.67%,
0.09%, 1.51%, and 9.43%. As a result, when considering all hazy images from these five
datasets, the proposed AUDS is ranked first and second under FSIMc and TMQI metrics,
respectively. This observation is explicable because the proposed AUDS is designed to
handle various haze conditions. Therefore, it may not deliver excellent performance on a
particular haze condition, but the result, in general, is always satisfactory. Additionally,
the quantitative evaluation results on hazy images imply a trade-off between dehazing
power and dynamic range, represented by FSIMc and TMQI metrics, respectively. Algo-
rithms that exhibit strong dehazing power are subject to undershoots, which cause the
pixel value to be black-limited and reduce the dynamic range.

Furthermore, although most studies in the literature have reported using hazy images
to conduct a comparative evaluation, the input images for a particular dehazing system
may not necessarily be hazy in the real world. Therefore, we also assess nine algorithms
using haze-free images. As expected, eight benchmark algorithms deliver unsatisfactory
performance because they apply the same dehazing procedure on haze-free images. Con-
sequently, the dehazing results are subject to visually untoward artifacts, such as color
distortion and loss of fine details, as illustrated in Figure 1. Conversely, the proposed
AUDS is equipped with the HDE to perceive whether the haze condition of the input
image. After that, it modifies the image blending and tone remapping correspondingly to
bypass the haze-free image. This appropriate course of action yields excellent performance,
as demonstrated in Table 4. More precisely, the proposed AUDS is ranked first on all
datasets in terms of FSIMc metric, while it only retains its superiority on real datasets in
terms of TMQI metric. On synthetic datasets (FRIDA2 and D-HAZY), a few haze-free
images exhibit a broad sky—which is pure white—in the background, deceiving the HDE
into misclassifying them as densely hazy images. Accordingly, the proposed AUDS fuses
the dehazed result into the final image, reducing the performance in this case. Additionally,
the fact that the sIFD outperforms the proposed AUDS on these two synthetic datasets is
due to the difference between single-scale and multiscale image fusion. On hazy images,
multiscale processing is beneficial for bringing out details obscured by the haze layer.
However, this technique may cause untoward artifacts on haze-free images, which are less
noticeable when processing on the original scale.

Overall, the proposed AUDS is well-performed on various haze conditions, whereas
other benchmark algorithms exhibit poor performance on haze-free images. This superi-
ority is mainly attributed to the HDE guidance in image blending and tone remapping
processes. With a high classification accuracy (96 percent), the HDE is generally very
accurate in identifying haze-free input images. The derived weights then appropriately
guide the image blending and tone remapping processes to transfer the input image into
the final result. In contrast, benchmark methods cannot perform image dehazing in a
haze-density-adaptive manner, causing undesirable degradation, such as color distortion
and a loss of dark details. Consequently, the corresponding results on haze-free images are
relatively poor, lowering the overall performance and widening the performance gap with
the proposed AUDS. This observation is evident in the last row of Table 4, where the best
results are boldfaced in red, green, and blue in descending order.



Sensors 2021, 21, 6373 21 of 26

Table 4. Average quantitative results on different datasets. Top three results are boldfaced in red, green, and blue.

Dataset
Method FFD DCP sIFD CAP NLD MBD DehazeNet MSCNN AUDS

FSIMc TMQI FSIMc TMQI FSIMc TMQI FSIMc TMQI FSIMc TMQI FSIMc TMQI FSIMc TMQI FSIMc TMQI FSIMc TMQI

FRIDA2 Hazy 0.7807 0.7314 0.7746 0.7291 0.7995 0.7227 0.7918 0.7385 0.7323 0.7727 0.6792 0.6512 0.7963 0.7336 0.8009 0.7232 0.7988 0.7263
Haze-free 0.8566 0.9329 0.9586 0.9680 0.9574 0.9912 0.9102 0.8832 0.8770 0.9502 0.6668 0.5003 0.9703 0.8716 0.9656 0.9024 0.9971 0.9202

D-HAZY Hazy 0.8703 0.8000 0.9002 0.8631 0.8640 0.7775 0.8880 0.8206 0.8395 0.8435 0.8316 0.7946 0.8874 0.7966 0.8822 0.8023 0.8685 0.7710
Haze-free 0.8672 0.8877 0.9541 0.9123 0.9518 0.9131 0.8968 0.8829 0.8681 0.9078 0.8281 0.8758 0.9843 0.9073 0.9497 0.9075 0.9941 0.9097

O-HAZE Hazy 0.7733 0.8416 0.8423 0.8403 0.8350 0.8991 0.7738 0.8118 0.8605 0.8915 0.8504 0.8605 0.7865 0.8413 0.8553 0.8737 0.8530 0.8983
Haze-free 0.8379 0.8172 0.9645 0.8765 0.9192 0.8337 0.8679 0.7906 0.8253 0.8134 0.8158 0.8088 0.9839 0.8562 0.9369 0.8513 1.0000 0.9324

I-HAZE Hazy 0.8055 0.7740 0.8208 0.7319 0.8583 0.8077 0.8252 0.7512 0.8823 0.8326 0.8607 0.8161 0.8482 0.7598 0.8631 0.7819 0.8786 0.8200
Haze-free 0.8283 0.8380 0.9335 0.8106 0.9555 0.8911 0.8716 0.7681 0.8608 0.8565 0.8324 0.8466 0.9751 0.8343 0.9724 0.8543 0.9983 0.8979

Dense-Haze Hazy 0.5598 0.5627 0.6419 0.6383 0.5628 0.5886 0.5773 0.5995 0.7169 0.7108 0.6867 0.6843 0.5573 0.5723 0.6029 0.6176 0.6148 0.6438
Haze-free 0.8571 0.8440 0.9414 0.8611 0.9455 0.8771 0.8508 0.7742 0.8339 0.8346 0.8237 0.8398 0.9776 0.8539 0.9693 0.8632 0.9973 0.9171

500IMG Haze-free 0.8645 0.8138 0.9563 0.8858 0.9366 0.8488 0.8795 0.8438 0.8855 0.8523 0.8605 0.8337 0.9870 0.8775 0.9383 0.8605 0.9990 0.8971

Total
Hazy 0.7573 0.7294 0.7746 0.7357 0.7799 0.7326 0.7693 0.7336 0.7608 0.7856 0.7228 0.6979 0.7725 0.7312 0.7896 0.7341 0.7900 0.7432

Haze-free 0.8621 0.8293 0.9548 0.8802 0.9399 0.8597 0.8798 0.8297 0.8764 0.8564 0.8378 0.8063 0.9840 0.8730 0.9449 0.8652 0.9986 0.9034
Overall 0.8170 0.7863 0.8886 0.8272 0.8812 0.8131 0.8392 0.7944 0.8340 0.8304 0.7964 0.7665 0.9063 0.8209 0.8879 0.8171 0.9220 0.8446

Next, Figures 8 and 9 depict the boxplots of the FSIMc and TMQI scores to provide
more insights into the quantitative evaluation. It should be noted that most of the possible
outliers (depicted as red round dots) are from the Dense-Haze dataset, whose constituent
images are affected by dense haze, hence the low FSIMc and TMQI scores. In Figure 8a, it
can be observed that the proposed AUDS exhibits the highest median, followed by MSCNN.
Additionally, these medians do not overlap with those for other methods, signifying that
the medians are statistically different with 95% confidence. Concerning the spread and
possible outliers, Figure 8a demonstrates no significant difference between FFD, sIFD, CAP,
DehazeNet, MSCNN, and the proposed AUDS. Their FSIMc scores roughly range from 0.65
to 0.95. Meanwhile, DCP, NLD, and MBD also exhibit some resemblance in their overall
spread of values, which is broader than that of the remaining methods. This observation
signifies that the strong dehazing power of DCP, NLD, and MBD renders them prone
to post-dehazing artifacts, which lower their FSIMc scores. The conclusion drawn from
Figure 8a is similar to the previous one based on the average FSIMc scores in Table 4.

Concerning haze-free images, the boxplots in Figure 8b demonstrate the superiority of
the proposed AUDS conspicuously. As the HDE discriminates the haze condition accurately,
the proposed AUDS can handle haze-free images effectively. Accordingly, Figure 8b shows
that the median for AUDS is very close to unity with the extremely narrow spread and
notch, offering statistically significant evidence of the difference between the medians.
Thus, the excellent performance on haze-free images improves the overall performance on
both hazy and haze-free images, as illustrated in Figure 8c.

Considering the TMQI scores, Figure 9a demonstrates that NLD outperforms other
methods on hazy images per se. This observation is statistically backed by a clear distinction
between its median and that of other methods. In addition, except for MBD with too broad
a spread of TMQI scores, FFD, DCP, sIFD, CAP, NLD, DehazeNet, MSCNN, and AUDS
exhibit similar distributions. Figure 9b demonstrates the pre-eminence of AUDS over eight
benchmark methods on haze-free images, similar to the interpretation on the boxplots in
Figure 8. Hence, the best overall performance of the proposed AUDS under the TMQI
metric is also backed by statistical evidence.
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(a) (b)

(c)
Figure 8. Boxplots of FSIMc scores on different datasets when considering: (a) hazy images only, (b) haze-free images only,
and (c) both hazy and haze-free images.

4.5. Run-Time Comparison

According to the description in Section 3, the proposed AUDS is mainly composed
of simple operations that have linear-time complexity except for the spatial image filter.
Conventionally, filtering an H ×W image by a sv× sv kernel takes O(H ·W · sv · sv) time.
Therefore, several studies have been witnessed on the fast implementation of commonly
used spatial image filters, such as minimum/maximum filter [50], box filter [51], and me-
dian filter [17]. As a result, the spatially filtering operations in the proposed AUDS can be
implemented in O(H ·W) time; hence, the linear-time complexity of the proposed AUDS.

Table 5 demonstrates a run-time comparison between the nine algorithms mentioned
above. The simulation environment is MATLAB R2019a, running on a computer with an
Intel Core i9-9900K (3.6 GHz) CPU, 64 GB RAM, and NVIDIA TITAN RTX GPU. Input
images with various resolutions were used as test images. From the comparison results,
nine algorithms can be approximately classified into three groups: slow, passable, and fast.
The slow group includes DCP, NLD, and DehazeNet. In contrast, CAP, sIFD, and FFD
exhibit the fastest processing speed and belong to the fast group. The proposed AUDS
improves sIFD with three processes: haze density estimation, image blending, and tone
remapping. Additionally, Ngo et al. [39] only conducted image fusion at the original scale
to facilitate the hardware implementation, whereas the proposed AUDS performed image
fusion from the smallest possible scale to the original scale. Accordingly, the proposed
AUDS requires more time than the base method to process images, and Table 5 shows that
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the processing time has been nearly tripled. For that reason, the proposed AUDS falls into
the passable group with MBD and MSCNN.

(a) (b)

(c)
Figure 9. Boxplots of TMQI scores on different datasets when considering: (a) hazy images only, (b) haze-free images only,
and (c) both hazy and haze-free images.

Moreover, the fact that the proposed AUDS is slower than the deep-learning-based
method of Ren et al. [46] merits an explanation. The core of this method is the multi-
scale convolutional neural network for estimating the transmittance, and Ren et al. [46]
implemented this network using the open-source MatConvNet toolbox [52]. As most
of MatConvNet’s building blocks are written in C++ and well-optimized, this method
is relatively fast compared with the typical implementation of deep neural networks on
MATLAB. The proposed AUDS, by contrast, was implemented using MATLAB’s building
functions; hence, the slow processing speed compared with C++ implementation is an
inherent problem. Nevertheless, the run-time comparison demonstrates that achieving
real-time processing with computational efficiency is challenging for all nine algorithms.
Addressing this issue is effort-intensive and thus is left for future studies.
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Table 5. Run-time in seconds on different image resolutions.

Method
Resolution 640 × 480 800 × 600 1024 × 768 1920 × 1080 4096 × 2160

FFD 0.28 0.59 0.76 1.51 9.02
DCP 12.64 19.94 32.37 94.25 470.21
sIFD 0.26 0.39 0.64 1.68 7.18
CAP 0.22 0.34 0.55 1.51 6.39
NLD 2.65 5.54 6.61 5.74 34.39
MBD 0.51 0.66 1.24 3.60 11.62

DehazeNet 1.53 2.39 3.88 10.68 47.35
MSCNN 0.54 0.88 1.53 3.43 17.90
AUDS 0.65 1.12 1.88 4.94 20.36

5. Conclusions

This paper presents a novel approach for dehazing a single image, regardless of haze
conditions. The proposed AUDS is equipped with a pseudo-cognitive function realized by
the HDE to perceive the image haze density. Accordingly, the input image and its dehazed
version obtained via multiscale-fusion-based dehazing are combined using image blending
and then post-processed with tone remapping. These two processes are self-calibrated
because they are guided by the haze density estimate obtained by invoking the HDE on
the input image. Therefore, image blending can assign appropriate percentages to the
two source images (the input image and its dehazed version) for efficient mixing. In turn,
tone remapping enhances the luminance and emphasizes the color proportionately to
produce a satisfactory result. Hence, the proposed AUDS can ensure superior dehazing
performance in any haze condition, as verified by the results of a comparative evaluation
with state-of-the-art benchmark methods. This superiority demonstrates the great potential
of the proposed AUDS in facilitating other high-level vision applications, and benefiting
practical systems, such as autonomous vehicles and surveillance cameras.

Although the proposed AUDS successfully processed haze-free images as well as hazy
images degraded by different haze conditions, the incorrect classification of input images
by the HDE during qualitative comparison indicates a potential weakness. For example,
a large and homogeneous background, such as the sky or sea, exhibits characteristics
similar to haze, deceiving the HDE into incorrect classification. Consequently, the proposed
AUDS, whose operation depends on the HDE, fails to handle this type of image properly.
This problem requires further improvement in the HDE. In particular, the HDE can be
utilized together with other haze density evaluators (for example, the FADE) in a bootstrap
aggregating manner to improve the classification accuracy. However, this challenging
problem is a subject for further research.
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