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Abstract: Image dehazing, as a common solution to weather-related degradation, holds great promise
for photography, computer vision, and remote sensing applications. Diverse approaches have been
proposed throughout decades of development, and deep-learning-based methods are currently
predominant. Despite excellent performance, such computationally intensive methods as these recent
advances amount to overkill, because image dehazing is solely a preprocessing step. In this paper, we
utilize an autonomous image dehazing algorithm to analyze a non-deep dehazing approach. After
that, we present a corresponding FPGA design for high-quality real-time vision systems. We also
conduct extensive experiments to verify the efficacy of the proposed design across different facets.
Finally, we introduce a method for synthesizing cloudy images (loosely referred to as hazy images) to
facilitate future aerial surveillance research.

Keywords: image dehazing; automation; FPGA; synthetic cloud/haze generation; aerial surveillance

1. Introduction

Image acquisition, for example outdoor imaging and remote sensing, is highly prob-
lematic owing to numerous natural factors, notably bad weather conditions. Under these
adverse effects, acquired images are subject to various types of degradation, ranging
from color distortion to visibility reduction. Consequently, high-level computer vision
algorithms—which generally assume clean input images—may incur a sharp drop in per-
formance, creating great demand for visibility restoration, as can be seen by the rapid
development of myriad algorithms for image dehazing, deraining, and desnowing over
the past two decades. In this paper, we restrict the discussion to image dehazing because
haze (or equivalently fog) appears to be more prevalent than rain and snow. Furthermore,
as haze and cloud originate from atmospheric scattering and absorption, image dehazing
algorithms also find applications in remote sensing.

1.1. Image Dehazing in Remote Sensing

Remote sensing applications such as aerial surveillance, battlefield monitoring, and re-
source management fundamentally impact on many aspects of modern society, including
transportation, security, agriculture, and so on. Despite their crucial importance, these
applications are prone to failure in areas of cloud cover, because light waves are subject to
atmospheric scattering and absorption when traversing cloud banks. As a result, remotely
sensed images become unfavorable for subsequent high-level applications, rendering image
dehazing highly relevant for visibility restoration.

For example, Figure 1 demonstrates the negative effects of cloud and the beneficial
effects of image dehazing on an aerial surveillance application. Specifically, Figure 1a is a
clean image from the Aerial Image Dataset (AID) [1], and Figure 1b is its corresponding
synthetic cloudy image. Cloud is synthesized herein due to the sheer impracticality of
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remotely sensing the same area in two different weather conditions. We will discuss
synthetic cloud generation in detail in Section 4.2.2. Figure 1c is the result of dehazing
Figure 1b using a recent algorithm developed by Cho et al. [2]. The three images on the
second row are the final outcomes of processing Figure 1a–c with a YOLOv4-based object
recognition algorithm [3]. In addition, it is noteworthy that the haziness degree evaluator
(HDE) [4] serves as a basis for discriminating Figure 1a as a clean image.

(a) (b) (c)

(d) (e) (f)

Figure 1. Illustration of the negative effects of cloud and beneficial effects of image dehazing on
an aerial surveillance application. First row: (a) a clean image and its corresponding (b) synthetic
cloudy image and (c) dehazed result. Second row: (d–f) results obtained after processing (a–c) using
a YOLOv4-based high-level object recognition algorithm. Notes: cyan labels represent airplanes,
and navy-blue labels represent birds.

It can be observed that the recognition algorithm detected nine airplanes from the
clean image in Figure 1a. In contrast, the number of detected airplanes in Figure 1e
was significantly lower. The detection rate dropped 66.67% from nine to three detected
airplanes. This observation implies that bad weather conditions such as cloud and haze
have a negative impact on high-level remote sensing applications.

To address this problem, we preprocessed the synthetic cloudy image using a dehaz-
ing algorithm developed by Cho et al. [2]. As Figure 1c shows, the visibility improved;
however, the airplane under the dense veil of cloud remains obscured. The corresponding
detection result in Figure 1f demonstrates a considerable increase (133.33%) in detection
rate from three (in Figure 1e) to seven detected airplanes. This observation, in turn, implies
the crucial importance of image dehazing in remote sensing applications.

However, another issue arises regarding whether to apply image dehazing, because
cloud occurs occasionally, while most image dehazing algorithms assume a hazy/cloudy
input. Obviously, dehazing a clean image results in untoward degradation, as Figure 2
demonstrates. Although the dehazed image in Figure 2b appears to be passable, without
any noticeable distortion, its corresponding detection results in Figure 2d exhibit a sharp
drop (66.67%) in detection rate from nine to three detected airplanes. The algorithm also
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misrecognized two airplanes as birds compared to only one misrecognition in Figure 2c.
This example, coupled with the previous one, emphasizes the need for an autonomous
image dehazing algorithm.

(a) (b) (c) (d)

Figure 2. Illustration of the negative effects of image dehazing on an aerial surveillance application
when the input image is clean. (a,b) A clean image and its corresponding dehazed result. (c,d) De-
tection results obtained after processing of (a,b) by a YOLOv4-based high-level object recognition
algorithm. Notes: (a,c) were adopted from Figure 1a,d. Cyan labels represent airplanes, and navy-blue
labels represent birds.

1.2. Real-Time Processing

Remotely sensed images usually possess high resolution, leading to a computation-
ally heavy burden for subsequent algorithms. For example, the S-65A35 camera of the
SAPPHIRE series, widely available on aerial surveillance systems, can deliver a superb
resolution of 9344× 7000 pixels at 35.00 frames per second (fps) [5]. As a result, virtually
every embedded surveillance system downscales the acquired image sequence to a reason-
able size before supplying the sequence to other algorithms, for computational efficiency
and to enable real-time processing. A good example of this is an aerial surveillance system
known as ShuffleDet [6], which downscales the input image to a resolution of 512× 512 to
achieve a processing speed of 14.00 fps.

Regarding the implementation of image dehazing, the software implementation per
se usually fails to meet the real-time processing requirement. To support this claim, we
adopt Table 1 from Ngo et al. [7]. The authors measured the processing time of nine
algorithms [2,7–14] whose source code is publicly available, for different image resolutions.
The simulation environment in this study was MATLAB R2019a, and the host computer
was equipped with an Intel Core i9-9900K (3.6 GHz) CPU, with 64 GB RAM, and an Nvidia
TITAN RTX graphics computing unit (GPU). The run-time evaluation in Table 1 demon-
strates that none of the nine algorithms could deliver real-time processing. Even with such
a small resolution as 640× 480, the fastest algorithm, developed by Zhu et al. [11], exhibited
a processing speed of 4.55 fps (≈1/0.22), approximately one fifth of the required speed of
25.00 fps.

Hence, there are currently two main approaches toward real-time processing. The first
approach aims to reduce the development time by focusing on flexibility, portability,
and programming abstraction. Under this approach, the embedded system usually needs
to be equipped with powerful computing platforms such as GPUs and low-power GPUs.
In the previous example of ShuffleDet, Azimi [6] presented an implementation on the
Nvidia Jetson TX2 board including a low-power GPU named Tegra X2 [15]. Although this
approach can meet the growing demand for high computing performance, it is not the best
choice compared with field-programmable gate arrays (FPGAs), which are at the center
of the second approach toward real-time processing. Wielage et al. [16] verified that a
Xilinx Virtex UltraScale+ FPGA was 6.5× faster and consumed 4.3× less power than the
Tegra X2 GPU, to support the preceding claim. For this reason, we present herein an FPGA
implementation of an autonomous dehazing system for aerial surveillance.
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Table 1. Processing time in seconds of different image dehazing methods for different image resolutions.

Method
Resolution 640 × 480 800 × 600 1024 × 768 1920 × 1080 4096 × 2160

Tarel and Hautiere [8] 0.28 0.59 0.76 1.51 9.02
He et al. [9] 12.64 19.94 32.37 94.25 470.21

Ngo et al. [10] 0.26 0.39 0.64 1.68 7.18
Zhu et al. [11] 0.22 0.34 0.55 1.51 6.39

Berman et al. [12] 2.65 5.54 6.61 5.74 34.39
Cho et al. [2] 0.51 0.66 1.24 3.60 11.62
Cai et al. [13] 1.53 2.39 3.88 10.68 47.35
Ren et al. [14] 0.54 0.88 1.53 3.43 17.90
Ngo et al. [7] 0.65 1.12 1.88 4.94 20.36

1.3. Contributions

Our contribution in this paper is threefold:

• An FPGA-based implementation of an autonomous dehazing algorithm that can
satisfactorily handle high-quality clean and hazy/cloudy images in real time.

• An in-depth discussion of FPGA implementation techniques to achieve real-time
processing on high-resolution images (DCI 4K in particular).

• An efficient method for synthesizing cloudy images from a clean dataset (AID).

The first is attributed to self-calibration on haze conditions, which results from the uti-
lization of the HDE. The second is achieved through a pipelined architecture for improving
throughput and a number of design techniques for reducing propagation delay. The third
is the desired result of simulating haze/cloud using the low-frequency parts of a random
distribution, with the density of synthetic haze/cloud controlled by the HDE. Thus far, it
can be observed that the HDE plays an essential role in the proposed system, and therein
lies the cause of its limitations, as discussed later in Section 4.3.

2. Literature Review

Image dehazing is a fundamental problem in computer vision, and is rooted in studies
on atmospheric scattering and absorption phenomena. As witnessed by the work of
Vincent [17] and Chavez [18], early research on image dehazing started five decades
ago. Through the long history of development, there have been various approaches to
restoring the scene radiance. Polarimetric dehazing [19,20], image fusion [21,22], and image
enhancement [7,10] are cases in point. It is also noteworthy that each approach has resulted
in hundreds of papers, and therein lies the sheer impracticality of reviewing them all.
Consequently, we focus our discussion on the single-image approach that relies on an
acquired red–green–blue (RGB) image.

To facilitate understanding of the review, we first briefly formalize the image dehazing
problem. Given a hazy RGB image I ∈ RH×W×3 of size H ×W, the atmospheric scattering
model (ASM) [23] decomposes it into two terms, known as the direct attenuation and the
airlight, as Equation (1) shows. Herein, J ∈ RH×W×3 is the scene radiance, t ∈ [0, 1]H×W

is the transmission map, A ∈ R1×1×3 is the global atmospheric light, and x represents
the spatial coordinates of pixels. Direct attenuation and airlight correspond to Jt and
A(1− t), respectively. The former signifies the multiplicative attenuation of reflected light
waves in the transmission medium, while the latter represents the additive influence of
the illumination.

I(x) = J(x)t(x) + A[1− t(x)]. (1)

Based on the ASM, most image dehazing algorithms develop two mapping functions
fA : RH×W×3 → R1×1×3 and ft : RH×W×3 → RH×W that estimate the global atmospheric
light and the transmission map, given the input image I. Researchers usually denote these
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two estimates as Â and t̂, and they restore the scene radiance J by rearranging Equation (1)
as follows:

J(x) =
I− Â

min(t̂, t0)
+ Â, (2)

where a small positive t0 helps avoid division by zero. Recently, deep learning models
have also found an application in image dehazing. Some early models [13,14] also learned
the mapping functions fA : RH×W×3 → R1×1×3 and ft : RH×W×3 → RH×W , whereas
recently developed models [24,25] learned an end-to-end mapping function fJ : RH×W×3 →
RH×W×3. Although image dehazing is achievable in various ways, it is worth recalling that
this astonishing operation is a preprocessing step, since this imposes strict requirements
on its implementation. A crucial requirement is real-time processing, as discussed in
Section 1.2.

According to a recent systematic review [26], image dehazing algorithms in the lit-
erature fall into three categories: image processing, machine learning, and deep learning.
Table 2 summarizes essential information on each category, and we exemplify them by one
or two representative methods in the following sections.

Table 2. Summary of image dehazing categories.

Category Description Representative Studies

Image
processing

Uses traditional computer vision
techniques and only the input RGB image [7–10]

Machine
learning

Uses machine learning techniques
additionally to exploit the hidden

regularities in relevant image datasets
[11,12,27,28]

Deep
learning

Uses deep neural networks with powerful
representation capability to learn relevant

mapping functions
[13,14,24,25]

2.1. Representative Single-Image Dehazing Algorithms

The categorization in Table 2 based on the primary technique employed to restore the
scene radiance and how the algorithm exploits image data can give an early indication of
the real-time processing capability of an image dehazing method. Generally, the first two
categories—image processing and machine learning—can handle the input image sequence
or video in real time. Conversely, the third category, deep learning, suffers from some
practical difficulties in achieving real-time processing.

2.1.1. Image Processing

Image dehazing methods founded on traditional computer vision techniques usually
favor human perception [29] because they are rooted in hand-engineered image features
such as contrast and saturation, which greatly influence the perceptual image quality. Per-
haps the most well-known research in this category is the dark channel prior of He et al. [9],
inspired by the dark-object subtraction method of Chavez [18]. He et al. [9] developed
ft : RH×W×3 → RH×W from the following two assumptions:

• The scene radiance J exhibits an extremely dark channel whose intensities approach
zero in non-sky patches;

• The transmission map t is locally homogeneous.

The first is based on the colorfulness of objects, i.e., one of the color channels should
be very low for the color to manifest itself. The second is based on the depth-dependent
characteristic of the transmission map. Depth information is mostly smooth except at
discontinuities in an image, and so is the transmission map. Mathematically, the equivalent
expressions are:
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• miny∈Ω(x){minc∈{R,G,B}[Jc(y)]} = 0, where Ω(x) denotes an image patch centered at
x, and c denotes a color channel;

• miny∈Ω(x)[t(y)] = t(x).

A transmission map estimate resulting from these two assumptions suffers from
block artifacts, rendering a refinement step essential. Accordingly, He et al. [9] utilized
soft matting [30]. Despite an excellent dehazing performance, the method of He et al. [9]
has two main drawbacks: failures in sky regions and high computational cost. These
shortcomings have resulted in a series of follow-up studies [31–33].

Regarding the mapping function fA : RH×W×3 → R1×1×3, He et al. [9] developed
a robust approach that remains widely used. Under this approach, the top 0.1% of the
brightest pixels in the dark channel of the input image serve as candidates for singling
out the atmospheric light. From among these, the pixel with highest intensity in the RGB
color space is chosen. Consequently, this approach is fairly robust against the problem of
incorrectly selecting white objects as atmospheric light.

2.1.2. Machine Learning

As image dehazing methods from the first category are based on hand-engineered
features, they may fail in particular circumstances. A prime example is the fact that the
dark channel prior proposed by He et al. [9] does not hold for sky regions. Therefore,
some hidden regularities learned from relevant image datasets can improve performance
in those cases.

Zhu et al. [11] developed the color attenuation prior in that manner. Through extensive
observations on outdoor images, they discovered that the scene depth correlated with
saturation and brightness. They then assumed that a linear model sufficed for expressing
that correlation and devised the simple expression ft : RH×W×3 → RH×W . Next, they
utilized maximum likelihood estimates to find the model’s parameters. The input data
consisted of a synthetic dataset with haze-free and corresponding synthesized hazy images.
The dehazing method of Zhu et al. [11] was relatively fast and efficient, as were the methods
in some of the follow-up studies [28,34,35].

Another notable approach is the learning framework proposed by Tang et al. [27]. This
framework comprises two main steps: feature extraction and transmission map inference.
Tang et al. [27] implemented the former in a multi-scale manner, and they utilized random
forest regression to realize the latter. Many deep learning models developed thereafter bear
a fundamental similarity to this framework. Despite an excellent dehazing performance,
the implementation of Tang et al. [27] incurs a heavy computational burden, hindering its
broad application in practice.

2.1.3. Deep Learning

An early attempt at applying deep learning models to image dehazing can be traced
back to the DehazeNet developed by Cai et al. [13]. They adopted a similar approach to
that of He et al. [9] to devise the mapping function fA : RH×W×3 → R1×1×3. To estimate
the transmission map, they utilized a convolutional neural network (CNN). The CNN’s
functionality is similar to that of the learning framework of Tang et al. [27]. The main steps
include: (i) feature extraction, (ii) feature augmentation, and (iii) transmission map infer-
ence, corresponding to: (i) feature extraction and multi-scale mapping, (ii) local extrema,
and (iii) the nonlinear regression presented by Cai et al. [13].

Recently, end-to-end networks that learn the mapping function fJ : RH×W×3 →
RH×W×3 have been gaining popularity. These networks are usually based on the encoder–
decoder architecture, which has been proven to be highly efficient due to its astonishing
ability to learn a robust representation of image features from a low to a high level of
abstraction. The FAMED-Net approach developed by Zhang and Tao [24] is a prime
example. FAMED-Net is a densely connected CNN whose architecture is designed based
upon multi-scale encoders and image fusion. It is also one of a few deep models that
can fulfill the real-time processing requirement. Zhang and Tao [24] realized FAMED-Net
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using a powerful Nvidia Titan Xp, yielding a processing speed of 35.00 fps on 620× 460
image resolution.

2.2. Summary

Image dehazing has long development history and dates back to the early 1970s. As a
result, hundreds of studies have been recorded in the literature. However, it is fortunately
unnecessary to review all of them. A recent systematic review [26] collated information
from influential studies and categorized the results into image processing, machine learning,
and deep learning approaches. This categorization can serve as an early indication of the
real-time processing capability of image dehazing algorithms. The first two categories are
generally capable, whereas the last one rarely is.

Moreover, most image dehazing methods assume a clean input image, but this as-
sumption is uncertain in practice, rendering an autonomous dehazing method highly
relevant. Therefore, we present herein an FPGA-based autonomous dehazing system to
fulfill the aforementioned requirements: real-time processing and autonomy.

3. Autonomous Dehazing System

To achieve autonomous dehazing, it is necessary to answer the following questions:

• How can the haze condition be determined from a single input image?
• How can an input image be dehazed according to its haze condition?

Regarding the first question, a practical solution is to use a metric such as the HDE. This
no-reference metric proportionally quantifies the haze density of the input image and can
be considered as the following mapping function fHDE : RH×W×3 → R. Because the HDE
yields a normalized score between zero and unity, it is highly appropriate for controlling the
dehazing process. Hence, an elegant answer to the second question is to exploit the HDE
score to adjust the dehazing power in proportion to the haze condition of the input image.

This idea is the underlying principle of the autonomous dehazing algorithm in [7],
which fails to meet the real-time processing requirement, as Table 1 demonstrates. Based on
this algorithm, the following first introduces the autonomous dehazing process and then
discusses major real-time processing hindrances. After that, Section 3.2 describes in detail
the proposed FPGA implementation for surmounting those hindrances, enabling real-time
processing for even high-quality (DCI 4K) images.

3.1. Base Algorithm

Figure 3 illustrates the main steps constituting the autonomous dehazing algorithm,
which accepts and handles arbitrary images. The fundamental idea is to combine the
input image with its corresponding dehazed result according to the HDE score. More
specifically, the algorithm first senses the haze condition of the input image and then
adjusts the dehazing power correspondingly. If the condition is haze-free, the dehazing
power becomes zero to keep the input image intact, because it is unnecessary to dehaze a
haze-free image. Otherwise, the dehazing power varies in proportion to the sensed haze
condition (thin, moderate, or dense haze). This haze-condition-appropriate processing
scheme is robust against image distortion caused by excessive dehazing, as the evaluation
results in [7] demonstrated.

According to [4], Equation (3) gives the HDE score ρI of an RGB image I, where
Ψ represents the whole image domain, and hence the representation |Ψ| denotes the
total number of pixels. The variable B keeps Equation (3) from growing too lengthy; its
expression is given in Equation (4), where κ is a user-defined parameter that was set to
−1 in [7], Imc is the difference between two extremum channels, and σI is the standard
deviation of the image luminance. Finally, ImΩ and Â denote the dark channel and the
global atmospheric light estimate discussed earlier in Section 2.

ρI =
1
|Ψ| ∑

∀x∈Ψ

ImΩ(x) + B(x)−
√

B2(x)− B(x)
[
Â(x)− ImΩ(x)

]
Â(x)

, (3)
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B(x) =
Imc(x)σI(x)

κ
, where κ 6= 0 and κ ≤ Imc(x)σI(x)

Â(x)− ImΩ(x)
, (4)

ImΩ(x) = min
y∈Ω(x)

{
min

c∈{R,G,B}
[Ic(y)]

}
, (5)

Imc(x) = max
c∈{R,G,B}

[Ic(y)]− min
c∈{R,G,B}

[Ic(y)]. (6)

Based on the HDE score ρI, the self-calibrating factor calculation block utilizes four
additional user-defined parameters (ρ1, ρ2, α, and θ) to compute a weighting factor for
image blending and adaptive tone remapping blocks. The self-calibrating factor calculation
follows Equations (7) and (8).

ω = (1− ρ̂I)
θ , (7)

where ω weights the contribution of the input image I in the image blending block, and ρ̂I
is a result of applying the mapping function f : R→ R,

ρ̂I =


0 ρI < ρ1(

ρI − ρ1

ρ2 − ρ1

)α

ρ1 ≤ ρI ≤ ρ2

1 ρI > ρ2

. (8)

HDE score

Self-calibrating factor

0

1

1

Arbitrary 
input image

Restored
image

Image dehazing
(based on multi-scale image fusion)

Haziness degree evaluator
(𝑓𝐻𝐷𝐸: ℝ

𝐻×𝑊×3 → ℝ)
Self-calibrating 

factor calculation

Image 
blending

Adaptive tone 
remapping

Haze-free

Thin haze

Moderate haze

Dense haze

Without dehazing

Mildly dehazing

Moderately dehazing

Fully dehazing

Figure 3. Block diagram of the autonomous dehazing algorithm in [7].

Provided that J is the dehazed result of I, Equation (9) shows the restored image R,
which is the output of the adaptive tone remapping block. This post-processing block
first enhances the luminance and then emphasizes the chrominance accordingly, lest color
distortion occurs. Equation (9) displays this as Pω{·} to imply that it is also guided by the
self-calibrating factor.

R = Pω{ωI + (1−ω)J}. (9)

The algorithm in [7] computes the dehazed result J based on multi-scale image fusion.
This image dehazing approach belongs to the image processing category and is based on
underexposure. Because this phenomenon occurs when inadequate incoming light hits the
camera sensor, a postulation exists in the literature that underexposure can alleviate the
negative effects of atmospheric scattering and absorption [36]. Therefore, fusing images
at different exposure degrees is analogous to image dehazing. Additionally, for adapting
this idea to the single-image approach, researchers have widely utilized gamma correction
to artificially underexpose an input image. Readers interested in a detailed treatment of
this dehazing approach are referred to [7,36]. Meanwhile, Algorithm 1 below provides a
corresponding formal description.
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Algorithm 1 Multi-scale image dehazing

Input: An RGB image I ∈ RH×W×3, the number of artificially underexposed images K ∈ Z+
0 and corresponding gamma

values {γk | γk ≥ 1 and k ∈ Z+
0 ∩ [1, K]}, and the number of scales N ∈ Z+

0 , N ≤ blog2[min(H, W)]c
Output: The restored image J ∈ RH×W×3

Auxiliary functions: u2(·) and d2(·) denote upsampling and downsampling by a factor of two

BEGIN
1: Create input pyramid:

{
Ik

n

∣∣∣ k ∈ Z+
0 ∩ [1, K] and n ∈ Z+

0 ∩ [1, N]
}

(a) First scale:
{

Ik
1 = Iγk

∣∣∣ k ∈ Z+
0 ∩ [1, K]

}
(b) Remaining scales:

{
Ik

n = d2(Ik
n−1)

∣∣∣ k ∈ Z+
0 ∩ [1, K] and n ∈ Z+

0 ∩ [2, N]
}

2: Create Laplacian pyramid:
{

Lk
n

∣∣∣ k ∈ Z+
0 ∩ [1, K] and n ∈ Z+

0 ∩ [1, N]
}

(a) Last scale:
{

Lk
N = Ik

N

∣∣∣ k ∈ Z+
0 ∩ [1, K]

}
(b) Remaining scales:

{
Lk

n = Ik
n − u2(Ik

n+1)
∣∣∣ k ∈ Z+

0 ∩ [1, K] and n ∈ Z+
0 ∩ [1, N − 1]

}
3: Create guidance pyramid:

{
Gk

n

∣∣∣ k ∈ Z+
0 ∩ [1, K] and n ∈ Z+

0 ∩ [1, N]
}

(a) First scale:
{

Gk
1 = 1− min

y∈Ω(x)

〈
min

c∈{R,G,B}

[(
Ik

1

)c
(y)
]〉 ∣∣∣∣ k ∈ Z+

0 ∩ [1, K]
}

(b) Remaining scales:
{

Gk
n = d2(Gk

n−1)
∣∣∣ k ∈ Z+

0 ∩ [1, K] and n ∈ Z+
0 ∩ [2, N]

}
4: Normalize guidance pyramid:

{
G̃k

n = Gk
n

/(
∑
∀k

Gk
n

) ∣∣∣∣ k ∈ Z+
0 ∩ [1, K] and n ∈ Z+

0 ∩ [1, N]

}
5: Fuse Laplacian pyramid:

(a) Temporary results:
{

Tn = ∑
∀k

G̃k
nLk

n

∣∣∣∣ n ∈ Z+
0 ∩ [1, N]

}
(b) Last scale: JN = TN
(c) Remaining scales:

{
Jn = Tn + u2(Jn+1)

∣∣ n ∈ Z+
0 ∩ [1, N − 1]

}
6: Output assignment: J = J1

END

The input data for multi-scale image dehazing include an RGB image I ∈ RH×W×3 of
size H ×W, a number of artificially underexposed images K ∈ Z+

0 and the corresponding
gamma values {γk | γk ≥ 1 and k ∈ Z+

0 ∩ [1, K]}, and the number of scales N ∈ Z+
0 .

The representation Z+
0 denotes a set of non-negative integers, and thus k ∈ Z+

0 ∩ [1, K]
means that k is a non-negative integer lying between 1 and K. Based on the image size, N
must be smaller than its maximum value of blog2[min(H, W)]c. Two auxiliary functions
u2(·) and d2(·) denote upsampling and downsampling by a factor of two.

The first step is to create an input pyramid {Ik
n | k ∈ Z+

0 ∩ [1, K] and n ∈ Z+
0 ∩ [1, N]}

(hereinafter referred to as {Ik
n} for short). After that, there follows the computation of

Laplacian and guidance pyramids ({Lk
n} and {Gk

n}). It is noteworthy that Algorithm 1
computes the guidance pyramid according to the dark channel prior [9], due to its strong
correlation with haze density. Before performing multi-scale fusion, it is essential to
normalize the guidance pyramid to prevent the out-of-range problem. Finally, the fifth
step demonstrates multi-scale fusion, beginning at the last scale and finishing at the first,
whose result is the restored image J. Figure 4 depicts an example where K = 3 and N = 3.
Substituting the restored image J into Equation (9) yields the final result R.
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Figure 4. Illustration of the multi-scale image dehazing in Algorithm 1 with K = 3 and N = 3.

Despite the excellent performance, the autonomous dehazing algorithm in [7] fails to
deliver real-time processing, as shown by the run-time comparison in Table 1. A major rea-
son is the multi-scale fusion scheme, because this algorithm sets N = blog2[min(H, W)]c.
This setting is beneficial to the restored image’s quality, but it carries a heavy burden of
memory, thus prolonging the processing time. The problem worsens from the perspective
of hardware implementation because multi-scale fusion requires multiple frame buffers for
upsampling and downsampling.

Furthermore, the minimum filtering operation is also at the root of the failure to
achieve real-time processing. From the perspective of software implementation, the ideal
complexity of filtering operations is O(H ×W), which comprises two for loops to filter an
H ×W image. Consequently, the processing time increases in proportion to the image size,
hindering high-quality real-time processing. The following presents an FPGA implementa-
tion where the computing capability suffices for handling DCI 4K images in real-time to
surmount the aforementioned challenges.

3.2. FPGA Implementation

The challenges of improving computing performance are rooted in software implemen-
tation, and parallelization is often a practical solution. In parallel computing, a task divides
into several sub-tasks, which central processors can execute independently, combining the
results upon completion. For example, Figure 5 illustrates a naive parallelization of the
autonomous dehazing algorithm discussed above, in which multi-scale image dehazing
and a haziness degree evaluator occur simultaneously. In contrast, self-calibrating factor
calculation, image blending, and adaptive tone remapping are dependent and thus occur
sequentially. This computation flow consists of four stages, and the first accounts for most
of the heavy computations. Accordingly, we assume that it is responsible for nine tenths
of the entire algorithm, which, fortunately, supports parallelization. Following Amdahl’s
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law [37], it is theoretically possible to achieve at most a 10× speedup in processing time
[=1/(1− 0.9)].

Arbitrary
input image

Adaptive tone 
remapping

Restored
image

Stage 1 Stage 2 Stage 3 Stage 4

Haziness degree 
evaluator

Muti-scale 
image dehazing

Self-calibrating 
factor calculation

Image 
blending

Figure 5. Illustration of a naive parallelization of the autonomous dehazing algorithm.

The run-time comparison results in Table 1 demonstrate that it took 0.65 s to handle a
640× 480 image. Hence, even if we apply parallelization with the maximum 10× speedup,
the corresponding processing speed of 15.38 fps (≈1/0.065) would still be less than required.
Consequently, FPGA implementation is essential for real-time processing, and the following
play key roles in the proposed design.

3.2.1. Pipelined Architecture

Figure 6 illustrates the pipelined architecture for a real-time FPGA implementation of
the base algorithm. The three primary components are the main logic, arithmetic macros,
and memories. The first realizes the computation flow depicted in Figure 5, in which
computation-intensive operations (such as multiplication, division, and taking square roots)
are offloaded onto the second. Meanwhile, the third is analogous to a cache, consisting of
SPRAMs for the temporary storage of data.

Input data include an RGB image I and timing signals, namely, clock, reset, and hori-
zontal and vertical active video (denoted as clk, rstb, hav, and vav in Figure 6). The image I
simultaneously undergoes the following three blocks: stalling, single-scale image dehazing,
and haziness degree evaluator. It is noteworthy that single-scale image dehazing is a
special case of Algorithm 1 where N = 1 and K = 5. We restricted the proposed FPGA
implementation to single-scale dehazing to circumvent the heavy burden of frame buffers.
In addition, to avoid race conditions when combining the input I and its dehazed result J,
we utilized stalling to delay I until J is available. After that, image blending combines I and
J to produce the blended image B, which, in turn, undergoes adaptive tone remapping for
luminance enhancement and chrominance emphasis. The proposed FPGA implementation
then outputs the restored image R, together with its corresponding horizontal and vertical
active video signals.

As briefly mentioned, arithmetic macros are responsible for heavy computations. Thus,
the design of all modules in the main logic becomes straightforward because they only ac-
count for lightweight operations (such as addition, subtraction, and data routing). However,
to avoid digression, we set out the discussion of arithmetic macros in Appendices A and B,
except for split multipliers. These circuits are aimed at reducing the propagation delay of
large multiplications, and we explain their operation principle later in Section 3.2.3.

Regarding the haziness degree evaluator, Equation (3) demonstrates that its calculation
involves global average pooling. Therefore, we exploited the high similarity between video
frames to design this block. As a result, its output ρI becomes available during the vertical
blank period, and the calculation of the self-calibrating factor ω takes place immediately
thereafter. Hence, the ω value of a frame self-calibrates the next frame, thus enabling
real-time processing of video data. Meanwhile, for processing still images, the proposed
FPGA implementation needs a rerun to correctly self-calibrate the image blending and
adaptive tone remapping blocks.
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𝜌𝐈 (13 bits)

Single-scale
image dehazing

Haziness degree
evaluator

Adaptive tone 
remapping
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hav, vav

Split multipliers
Serial and parallel dividers

Square rooters

Arithmetic macros

Memories

Main logic

Self-calibrating 
factor calculation

Image blending

Figure 6. Pipelined architecture of the proposed FPGA implementation.

To implement this hardware architecture, we utilized the Verilog hardware description
language (IEEE Standard 1364-2005) [38] and register-transfer level (RTL) design abstraction.
The former supports generality, portability, and plug-and-play capability, while the latter
eases the hardware design burdens. For example, as the RTL methodology focuses on
modeling the signal flow, it is simple and convenient to describe all modules in the main
logic following the description in Section 3.1. In particular, the plug-and-play capability
allows reuse of existing RTL designs, and the adaptive tone remapping is a case in point.
Cho et al. [39] implemented and packaged this module as intellectual property, facilitating
its integration into the proposed implementation.

The pipelined architecture in Figure 6 improves the system’s throughput, whereas the
processing speed depends on the propagation delay of combinational logic circuits (CLCs).
Accordingly, the following describes two techniques for reducing the propagation delay:

• Fixed-point design for minimizing the signal’s word length to reduce the size of CLCs;
• Split multiplying for breaking large multiplications (represented by a large CLC)

into smaller ones and inserting pipeline registers (PRs) between them, thus reducing
propagation delay.

3.2.2. Fixed-Point Design

Fixed-point representation is a concept in computing that represents fractional num-
bers using only a fixed number of digits. Consequently, it sacrifices accuracy to reduce the
representational burden. The fixed-point representation Q f of a real number Q is given
below, where U denotes the number of fractional digits (or fractional bits when dealing
with binary numbers).

Q f =

⌊
Q · 2U + sgn(Q) · 1

2

⌋
, (10)

sgn(Q) =


−1 Q < 0

0 Q = 0

1 Q > 1

. (11)
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Fixed-point design refers to a method of finding the optimal fixed-point representation
of all system signals, and an error tolerance ∆ is a prerequisite for that purpose. Specifically,
given Q, its integer part determines the number of integer bits. Meanwhile, the absolute
difference |Q f −Q · 2U | is compared with ∆ to determine and adjust the number of frac-
tional bits. Herein, given the eight-bit input image data, we determined the word length of
the signals in Figure 6 based on an error tolerance of ±1 least significant bit. The results
were {12, 13, 13, 12, 12} bits for {J, ρI, ω, B, R}, respectively.

3.2.3. Customized Split Multiplier

Split multiplying is analogous to the grid method that is often taught at primary school.
Under this approach, the SM-bit multiplicand M and the SE-bit multiplier E arbitrarily
divide into SM1 -bit M1, SM2 -bit M2, SE1 -bit E1, and SE2 -bit E2, where SM1 + SM2 = SM and
SE1 + SE2 = SE. The product P can then be expressed as follows:

P = M · E
= (M12SM2 + M2) · (E12SE2 + E2)

= (M1E12SM2 + M2E1)2
SE2 + (M1E22SM2 + M2E2). (12)

Hence, a large multiplication M · E divides into four smaller ones: M1E1, M2E1, M1E2,
and M2E2. By inserting four additional PRs to store the results of these multiplications,
the latency increases by one clock cycle. However, the propagation delay incurred for
computing each of M1E1, M2E1, M1E2, and M2E2 is significantly smaller than that for
computing the original multiplication M · E.

As described thus far, the proposed FPGA implementation is the final result of a
sophisticated design process. We adopted pipelining and fixed-point design to improve
the throughput and processing speed, respectively. In addition, we also utilized split multi-
plying to break large multiplications into smaller ones, further reducing the propagation
delay until achieving real-time processing for DCI 4K resolution.

4. Evaluation

This section provides the hardware implementation results and compares the proposed
FPGA implementation with existing benchmark designs to verify its efficacy. A perfor-
mance evaluation then follows to demonstrate the autonomous dehazing capability on
outdoor and aerial images.

4.1. Hardware Resources

For hardware implementation, the target FPGA device was a Zynq-7000 XC7Z045-
2FFG900 equipped with a Xilinx Zynq-7000 SoC ZC706 evaluation kit [40], and the tool
was Xilinx Vivado v2019.1 [41]. We selected this FPGA device to facilitate the comparison
with existing real-time designs [35,42] whose target was also Zynq-7000 XC7Z045-2FFG900.

4.1.1. Implementation Results

Table 3 summarizes the implementation results of the proposed autonomous dehaz-
ing system. Given the total hardware resources available in the mid-size FPGA device
mentioned above, less than one third was required to realize the proposed system. More
precisely, it took 53,216 slice registers, 49,799 slice look-up tables (LUTs), 45 RAM36E1s,
and 22 RAM18E1s out of the corresponding 437,200, 218,600, 545, and 1090. The minimum
period reported in Table 3 is equivalent to the maximum propagation delay among all
CLCs of the system. This specifies the minimum interval at which the system produces
new output data; thus, its reciprocal is the maximum frequency. As reported, the proposed
system can handle at most 271.37 Mpixels per second.
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Let fmax denote that maximum frequency. Then, the following equation demonstrates
the calculation of maximum processing speed (MPS) in fps.

MPS =
fmax

(H + Bver)(W + Bhor)
, (13)

where H and W are the image height and width, and Bver and Bhor denote the verti-
cal and horizontal blank periods. Herein, the three variables fmax, Bver, and Bhor were
design-dependent. Accordingly, if hardware designers fail to consider the blank periods,
a design with an impressive fmax may deliver a slow MPS. In this study, we imple-
mented the proposed system to operate correctly with minimum periods of one clock
cycle (Bhor = 1) and one image line (Bver = 1). Table 4 summarizes the MPS values for
different image resolutions, ranging from Full HD to DCI 4K. Thus, the proposed FPGA
implementation can handle DCI 4K images/videos at 30.65 fps, which satisfies the real-time
processing requirement.

Table 3. Hardware implementation results for the proposed autonomous dehazing system. LUT
stands for look-up table, and the symbol # denotes quantities.

Xilinx Vivado v2019.1

Device XC7Z045-2FFG900

Slice Logic Utilization Available Used Utilization

Slice registers (#) 437,200 53,216 12.17%
Slice LUTs (#) 218,600 49,799 22.78%

RAM36E1/FIFO36E1s 545 45 8.26%
RAM18E1/FIFO18E1s 1090 22 2.02%

Minimum period 3.685 ns
Maximum frequency 271.37 MHz

Table 4. Maximum processing speeds in frames per second for different image resolutions. The sym-
bol # denotes quantities.

Standard Resolution Required Clock Cycles (#) Processing Speed (MPS)

Full HD 1920× 1080 2,076,601 130.68
Quad HD 2560× 1440 3,690,401 73.53

4K
UW4K 3840× 1600 6,149,441 44.13

UHD TV 3840× 2160 8,300,401 32.69
DCI 4K 4096× 2160 8,853,617 30.65

4.1.2. Comparison with Benchmark Designs

In the literature on image dehazing, a few real-time implementations exist, and those
developed by Park and Kim [43] and Ngo et al. [35,42] are cases in point. The first design
realizes the well-known algorithm of He et al. [9], in which Park and Kim [43] improve
the atmospheric light estimation for video processing. The second design [42] improves
the dehazing method of Tarel and Hautiere [8] by devising an excellent edge-preserving
smoothing filter to replace the standard median one. Finally, the third design [35] is
an improved version of the method of Zhu et al. [11]. It has remedied several visually
unpleasant problems such as background noise, color distortion, and post-dehazing false
enlargement of bright objects.

Table 5 below summarizes the implementation results of the four designs. A con-
spicuous observation is that the proposed autonomous dehazing system requires the least
hardware resources. Despite its compact size, its processing speed is virtually the same
as the fastest implementation in [35]. Finally, the proposed system is equipped with the
unique feature of autonomous dehazing, as demonstrated in the following.
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Table 5. Comparison with existing benchmark designs. The symbol # denotes quantities.

Hardware Utilization Park and Kim [43] Ngo et al. [42] Ngo et al. [35] Proposed Design

Registers (#) 53,400 70,864 57,848 53,216
LUTs (#) 64,000 56,664 53,569 49,799
DSPs (#) 42 0 0 0

Memory (Mbits) 3.2 1.5 2.4 1.4
Maximum frequency (MHz) 88.70 236.29 271.67 271.37

Maximum resolution SVGA DCI 4K DCI 4K DCI 4K
Autonomous dehazing Unequipped Unequipped Unequipped Equipped

4.2. Performance

This section evaluates the dehazing performance of the proposed system against
five state-of-the-art methods, including those proposed by He et al. [9], Zhu et al. [11],
Cai et al. [13], Berman et al. [12], and Cho et al. [2]. The evaluation is performed on two types
of images—outdoor and aerial—to demonstrate the breadth of applications of the proposed
system. An essential difference between these two is the area of inspection. Outdoor
images depict an area close to the camera, and they serve as data for understanding the
environment within which the camera operates. In contrast, aerial images depict a larger
inspection area, and they serve as data for monitoring a changing situation.

4.2.1. Outdoor Images

Because the aforementioned methods usually deliver satisfactory performance, images
demonstrated hereinafter are those for which dehazing-related artifacts are easily noticeable.
Figure 7 shows four representative outdoor images and the corresponding results of
applying six dehazing methods in which the haze condition is determined based on
the HDE score. Following [7], we adopt two thresholds {ρ1, ρ2} = {0.8811, 0.9344} to
discriminate the haze condition. Let ρI be the input image’s HDE score. Then, its haze
condition is one of the following:

• Haze-free if ρI < ρ1;
• Thin haze if ρ1 ≤ ρI < (ρ1 + ρ2)/2;
• Moderate haze if (ρ1 + ρ2)/2 ≤ ρI < ρ2;
• Dense haze if ρI ≥ ρ2.

It emerges from Figure 7 is that the five benchmark methods could not handle haze-free
images correctly, as can be seen by the severe color distortion (dark-blue sky), except for the
method of Cai et al. [13], where it can be seen that the powerful CNN is versatile enough to
adapt to various haze conditions. However, slight degradation is noticeable in the near-field
plants. The proposed system, in contrast, successfully discriminates this image as haze-free
and zeroes the dehazing power through ω = 1 in Equation (9). Consequently, it leaves the
haze-free image intact and thus free of any visually unpleasant artifacts.

In addition, except for the deep CNN of Cai et al. [13], the benchmark methods exhibit
post-dehazing artifacts in thin, moderate, and dense haze. Their dehazing power is too
strong and not well adapted to the local content of images, as can be seen in the excess haze
removal in the upper half and the persistence of haze in the lower half. For the same reason
as that mentioned above, the results of Cai et al. [13] demonstrate a less severe problem.
The proposed system takes a step forward and displays more satisfactory results than the
benchmark methods. It automatically adjusts the dehazing power lest excess haze removal
occurs. This desirable behavior is attributed to the elegant use of HDE scores to guide the
image blending and adaptive tone remapping blocks.

Furthermore, we utilized three full-reference metrics, namely, mean squared error
(MSE), structural similarity (SSIM) [44], and feature similarity extended to color images
(FSIMc) [45] to assess the dehazing performance quantitatively. In these three metrics,
the smaller the MSE the better, whereas the opposite applies to SSIM and FSIMc. In addi-
tion, as these are full-reference metrics, we employed the following fully annotated datasets:
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FRIDA2 [46], D-HAZY [47], O-HAZE [48], I-HAZE [49], and Dense-Haze [50]. FRIDA2
consists of 66 graphics-generated images of road scenes, based on which Tarel et al. [46]
synthesized four hazy image groups (in total, 66 haze-free and 264 hazy images). Similarly,
D-HAZY is composed of 1472 indoor images whose corresponding hazy images are syn-
thesized with scene depths captured by a Microsoft Kinect camera. In contrast, O-HAZE,
I-HAZE, and Dense-Haze comprise 45, 30, and 55 pairs of real hazy/haze-free images
depicting indoor, outdoor, and both indoor and outdoor scenes, respectively. Another facet
to consider is that input images to a dehazing system are not necessarily hazy. Hence, we
employed both the haze-free and hazy images of those datasets and an additional 500IMG
dataset [35] consisting of 500 haze-free images collected in our previous work.

Table 6 summarizes the quantitative evaluation results, where we boldface the top
three results in red, green, and blue, respectively, for ease of interpretation. Thus, it is
clearly seen that the proposed system demonstrates the best performance regardless of haze
conditions. In particular, it attains virtually perfect scores for haze-free images, attributed
to the excellent performance of HDE in haze condition discrimination. In addition, even the
results on hazy images per se show a clear gap between this and the second-best method.

Overall, the methods of He et al. [9] and Cai et al. [13] share the following two positions.
Table 6 shows that the former is situational. On the one hand, it exhibits the top scores
on D-HAZY due to its well-known excellence in indoor dehazing. On the other hand, its
inherent failure to handle sky regions results in poor performance on FRIDA2. Conversely,
the latter is versatile as it performs relatively well on all datasets. It is also noteworthy that
SSIM does not account for the chrominance information; hence, the method of He et al. [9]
is ranked second overall under this metric. However, under FSIMc, which accounts for
chrominance, the DehazeNet of Cai et al. [13] is ranked second, consistently with the
qualitative evaluation results in Figure 7.

The remaining three methods of Berman et al. [12], Cho et al. [2], and Zhu et al. [11]
occupy the last three positions. Quantitative results on Dense-Haze demonstrate that the
two methods of Berman et al. [12] and Cho et al. [2] are effective for haze removal. However,
as the qualitative evaluation shows, they are susceptible to severe post-dehazing artifacts.
The method of Zhu et al. [11] suffers from several problems such as color distortion and
background noise (as pointed out by Ngo et al. [34]), resulting in its poor performance.

4.2.2. Aerial Images

In the aerial surveillance literature, no real datasets exist comprising pairs of hazy (or
cloudy) images and their corresponding ground-truth reference. This is due to the sheer
impracticality of capturing the same area under different weather conditions. Therefore,
we propose a method to synthesize hazy images for evaluating image dehazing algorithms
in aerial surveillance.

According to Equation (1), the global atmospheric light A and transmission map t
are prerequisites for hazy image synthesis. As A remains constant across the entire image
domain, it is a common practice to derive A from the uniform distribution. In contrast,
synthesizing t is a difficult task. On the one hand, Zhu et al. [11] proposed creating a
pixel-wise random transmission map whose values were uniformly distributed. On the
other hand, Jiang et al. [28] added a constant haze layer to a clean image by utilizing
a scene-wise random transmission map. These two approaches are unrealistic because
they do not reflect the true distribution of haze. To address this problem, we propose
synthesizing haze/cloud as a set of low-frequency randomly distributed values, as shown
in Algorithm 2.
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Input image

He2011

Zhu2015

Cai2016

Berman2016

Cho2018

Proposed system

(a) (b) (c) (d)

Figure 7. Qualitative evaluation of different image dehazing methods on outdoor images. (a–d) corre-
spond to four haze conditions: haze-free, thin, moderate, and dense. The ρI values of input images are
0.7853, 0.8986, 0.9216, and 0.9388, respectively. He2011, Zhu2015, Cai2016, Berman2016, and Cho2018
denote five benchmark methods of He et al. [9], Zhu et al. [11], Cai et al. [13], Berman et al. [12], and
Cho et al. [2].
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Table 6. Average mean squared error (MSE), structural similarity (SSIM), and feature similarity
extended to color images (FSIMc) scores on different datasets. Top three results are boldfaced in red,
green, and blue.

Dataset
Method He et al. [9] Zhu et al. [11] Cai et al. [13] Berman et al. [12] Cho et al. [2] Proposed System

MSE SSIM FSIMc MSE SSIM FSIMc MSE SSIM FSIMc MSE SSIM FSIMc MSE SSIM FSIMc MSE SSIM FSIMc

FRIDA2 Hazy 0.0744 0.5969 0.7746 0.0744 0.5473 0.7918 0.0679 0.6289 0.7963 0.0705 0.6603 0.7323 0.1559 0.5517 0.6792 0.0636 0.7378 0.8007
Haze-free 0.0295 0.7870 0.9586 0.0705 0.4414 0.9102 0.0430 0.5901 0.9703 0.0264 0.7338 0.8770 0.2261 0.5357 0.6668 0.0016 0.9890 0.9977

D-HAZY Hazy 0.0309 0.8348 0.9002 0.0483 0.7984 0.8880 0.0528 0.7916 0.8874 0.0492 0.7473 0.8395 0.0606 0.7212 0.8316 0.0669 0.7614 0.8691
Haze-free 0.0211 0.9049 0.9541 0.0317 0.7957 0.8968 0.0111 0.8823 0.9843 0.0359 0.7994 0.8681 0.0336 0.7252 0.8281 0.0017 0.9911 0.9953

O-HAZE Hazy 0.0200 0.7709 0.8423 0.0226 0.6647 0.7738 0.0266 0.6999 0.7865 0.0255 0.8024 0.8605 0.0196 0.7745 0.8504 0.0272 0.7562 0.8277
Haze-free 0.0086 0.9221 0.9645 0.0335 0.6508 0.8679 0.0135 0.8384 0.9839 0.0257 0.7054 0.8253 0.0227 0.6731 0.8158 0.0000 1.0000 1.0000

I-HAZE Hazy 0.0535 0.6580 0.8208 0.0362 0.6864 0.8252 0.0320 0.7116 0.8482 0.0275 0.7959 0.8823 0.0344 0.7693 0.8607 0.0281 0.7793 0.8611
Haze-free 0.0361 0.8030 0.9335 0.0441 0.6353 0.8716 0.0273 0.6704 0.9751 0.0311 0.7491 0.8608 0.0317 0.7184 0.8324 0.0001 0.9997 0.9998

Dense-Haze Hazy 0.0549 0.4662 0.6419 0.0646 0.4171 0.5773 0.0793 0.3923 0.5573 0.0597 0.5225 0.7169 0.0549 0.5254 0.6867 0.0652 0.4318 0.5939
Haze-free 0.0212 0.8790 0.9414 0.0458 0.6077 0.8508 0.0203 0.7767 0.9776 0.0347 0.7321 0.8339 0.0241 0.7147 0.8237 0.0002 0.9993 0.9996

500IMG Haze-free 0.0117 0.9350 0.9563 0.0320 0.7668 0.8795 0.0070 0.8967 0.9870 0.0242 0.8193 0.8855 0.0196 0.7852 0.8605 0.0001 0.9994 0.9996

Total
Hazy 0.0621 0.6207 0.7746 0.0634 0.5764 0.7693 0.0615 0.6203 0.7725 0.0600 0.6720 0.7608 0.1139 0.5973 0.7228 0.0575 0.7037 0.7845

Haze-free 0.0150 0.9079 0.9548 0.0364 0.7122 0.8798 0.0127 0.8458 0.9840 0.0254 0.7956 0.8764 0.0418 0.7463 0.8378 0.0003 0.9982 0.9993
Overall 0.0323 0.8025 0.8886 0.0463 0.6623 0.8392 0.0306 0.7630 0.9063 0.0381 0.7502 0.8340 0.0682 0.6916 0.7964 0.0213 0.8901 0.9204

Algorithm 2 Synthetic haze/cloud generation

Input: Image size H, W ∈ Z+
0 and cut-off frequency Fc ∈ [0, π]

Output: Transmission map t ∈ [0, 1]H×W

Auxiliary functions: N (H, W) generates a H ×W image of random Gaussian noise,
{F (·), I(·)} denote forward and inverse Fourier transforms, and L(X, Fc) denotes
low-pass filtering the image X with the cut-off frequency Fc

BEGIN
1: Create Gaussian noise: v = N (H, W)

2: Perform Fourier transform: V = F (v)
3: Filter out high frequencies: Ṽ = L(V, Fc)

4: Perform inverse Fourier transform: vi = I(Ṽ)

5: Normalize: t = [vi −min(vi)] / [max(vi)−min(vi)]

END

The underlying idea is to create an image of random Gaussian noise that consists of
low and high frequencies. Then, by filtering out the high-frequency information, what
remains closely resembles a real haze/cloud distribution. Figure 8 serves as an intuitive
illustration of Algorithm 2.

Begin End
Gaussian noise 

generation
Fourier 

transform
Inverse Fourier 

transform
Low-pass 
filtering

Figure 8. Intuitive illustration of synthetic haze/cloud generation.

Using the random haze/cloud distribution discussed above, we synthesized
hazy/cloudy images from their clean counterparts based on Equation (1), as shown in Al-
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gorithm 3. For customization, we exploited the HDE [4] to guide the generation to arrive at
an image that possessed a desirable HDE score. In Algorithm 3, the haze density control
Dρ ∈ R+

0 and its step δ are responsible for varying the haze density to meet the prede-
termined HDE score. In addition, to help to avoid the generation of an infinite loop, we
adopted the HDE tolerance ∆ρ and a maximum number of iterations MI . An example of
this synthetic hazy/cloudy image generation is shown in Figure 1b.

Figures 9 and 10 demonstrate the dehazing performance of the proposed system and
the benchmark methods on synthetic aerial hazy images, where their corresponding haze-
free images are from AID [1]. As with the assessment of outdoor images, the benchmark
methods suffered from color distortion and halo artifacts, causing a marked difference
between their results and the corresponding haze-free reference at the top left. Table 7
summarizes the MSE, SSIM, and FSIMc scores on synthetic aerial images in Figures 9 and 10.
It can be observed that the proposed system shares the top performance with the two
methods of Cai et al. [13] and He et al. [9]. More specifically, its performance is within the
top two for images with thin and moderate haze as well as for haze-free images. However,
for densely hazy images, the performance is slightly worse than that of the aforementioned
two benchmark methods. This is due to the fact that the benchmark methods often suffer
from severe color distortion in the sky, whereas aerial images generally cover territorial
areas. Therefore, the reduced performance for aerial images with dense haze is explicable.

Finally, we assessed the performance of a YOLOv4-based high-level object recognition
algorithm (mentioned in Section 1.1) on the dehazed results depicted in Figure 9. Table 8
summarizes the detection results, while Figure 11 illustrates them visually. The term Failure
in Table 8 denotes the number of incorrectly detected objects. It is also noteworthy that
the detection results reported in the table were aggregated based on the confidence level.
The results for the method of Zhu et al. [11] for a moderately hazy image in Figure 11
can be taken as an example. The recognition algorithm yielded two detection results for
the airplane near the center of the image: bird with 40% confidence and airplane with
31% confidence. Therefore, the final result for that airplane was the label with the higher
confidence level, i.e., bird. Obviously, the algorithm incurred a Failure in this case, and the
underlying reason was probably color distortion occurring due to excess haze removal.

Based on Table 8 and Figure 11, the proposed system is clearly superior to the bench-
mark methods because it does not cause any additional Failures compared with the input
image. Two Failures for haze-free and thin haze images are inherent in the input image
itself. In contrast, the benchmark methods are prone to excess haze removal, and therein
lies the cause of many Failures.

Table 7. Average MSE, SSIM, and FSIMc scores on synthetic aerial hazy images. Top three results for
each image are boldfaced in red, green, and blue.

Image
Method He et al. [9] Zhu et al. [11] Cai et al. [13] Berman et al. [12] Cho et al. [2] Proposed System

MSE SSIM FSIMc MSE SSIM FSIMc MSE SSIM FSIMc MSE SSIM FSIMc MSE SSIM FSIMc MSE SSIM FSIMc

Figure 9

Haze-free 0.0271 0.7261 0.8254 0.0193 0.8570 0.9507 0.0615 0.6187 0.9663 0.0581 0.4902 0.7528 0.0387 0.5233 0.7132 0.0000 1.0000 1.0000
Thin 0.0269 0.7754 0.8735 0.0124 0.9093 0.9616 0.0434 0.7539 0.9678 0.0324 0.6271 0.7605 0.0319 0.5848 0.7407 0.0028 0.9685 0.9778

Moderate 0.0206 0.8298 0.9134 0.0121 0.8848 0.9572 0.0148 0.8740 0.9591 0.0346 0.5990 0.7791 0.0211 0.6660 0.7842 0.0081 0.8888 0.9387
Dense 0.0317 0.7486 0.8769 0.0570 0.7305 0.8733 0.0457 0.7534 0.8719 0.0480 0.6448 0.7961 0.0466 0.6502 0.7923 0.0581 0.7450 0.8641

Figure 10

Haze-free 0.0110 0.9595 0.9653 0.0824 0.6984 0.8792 0.0131 0.9578 0.9860 0.0471 0.7363 0.8169 0.0506 0.7720 0.8719 0.0000 1.0000 1.0000
Thin 0.0110 0.9512 0.9560 0.0681 0.7546 0.9133 0.0099 0.9644 0.9826 0.0330 0.7650 0.8211 0.0473 0.7773 0.8717 0.0016 0.9836 0.9823

Moderate 0.0108 0.9493 0.9542 0.0550 0.8052 0.9286 0.0079 0.9693 0.9824 0.0365 0.7590 0.8184 0.0429 0.7955 0.8803 0.0041 0.9646 0.9648
Dense 0.0425 0.8062 0.8664 0.0247 0.8629 0.9037 0.0157 0.8838 0.9086 0.1046 0.6309 0.8178 0.0268 0.8508 0.9027 0.0185 0.8564 0.8724
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Algorithm 3 Synthetic hazy/cloudy image generation

Input: Clean image J ∈ RH×W×3, cut-off frequency Fc ∈ [0, π], haze density control Dρ ∈
R+

0 and its step δ, desirable HDE score ρd ∈ [0, 1], HDE tolerance ∆ρ, and maximum
iteration MI

Output: Synthetic hazy/cloudy image I ∈ RH×W×3

Auxiliary functions: T (H, W, Fc) generates a H ×W transmission map described in
Algorithm 2, randu(x, y) generates a uniformly distributed number in the range [x, y],
D(I) calculates the HDE score of the image I, and sgn(·) is the sign function defined in
Equation (11)

BEGIN
1: Derive global atmospheric light: A = randu(0.8, 1)
2: Derive transmission map: t = T (H, W, Fc)

3: Synthesize hazy/cloudy image: I = JtDρ + A[1− tDρ ]

4: Calculate HDE score: ρI = D(I)
5: Initialize: i = 0, ε = |ρI − ρd|
6: while

(
ε > ∆ρ

)
AND (i < MI) do

7: Adjust haze density: Dρ = [Dρ − sgn(ε)]δ1−ε

8: Repeat steps 3 and 4
9: Update: i = i + 1, ε = |ρI − ρd|

10: end while

END

Table 8. Summary of detection results for a YOLOv4-based high-level object recognition algorithm
operating on images in Figure 9. The symbol # denotes quantities.

Method
Case Haze-Free Thin Moderate Dense

Airplane (#) Failure (#) Airplane (#) Failure (#) Airplane (#) Failure (#) Airplane (#) Failure (#)

Input 9 1 9 1 9 0 3 0
He et al. [9] 9 1 8 2 7 4 9 1

Zhu et al. [11] 9 1 9 3 6 2 6 0
Cai et al. [13] 7 2 8 3 8 2 6 0

Berman et al. [12] 0 1 2 3 6 4 7 1
Cho et al. [2] 4 1 5 3 8 4 7 2

Proposed system 9 1 10 1 10 0 7 0

4.3. Limitations

The preceding evaluation demonstrates that the superiority of the proposed system
over the five benchmark methods can be attributed to the self-calibrating factor. As this
factor’s calculation depends on the HDE, the same applies to the proposed system. In other
words, it inherits the HDE’s limitations. According to Ngo et al. [4], the HDE is prone to
the following two problems:

• Misclassifying haze-free images with a broad and smooth background as mildly hazy;
• Misclassifying hazy night-time images as haze-free.

If one of these two situations arises, the proposed system may produce post-dehazing
artifacts due to incorrect self-calibration. However, it is noteworthy that the degradation
degree is virtually unnoticeable, as demonstrated in [7]. Furthermore, these limitations
are seldom a matter of concern because of the HDE’s exceptional accuracy of 96% in
hazy/haze-free image classification.
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Input image

He2011

Zhu2015

Cai2016

Berman2016

Cho2018

Proposed system

(a) (b) (c) (d)

Figure 9. Qualitative evaluation of different image dehazing methods on an aerial image depicting
an airport. (a–d) correspond to four haze conditions: haze-free, thin, moderate, and dense. The
ρI values of input images are 0.8771, 0.9026, 0.9279, and 0.9594, respectively. He2011, Zhu2015,
Cai2016, Berman2016, and Cho2018 denote five benchmark methods of He et al. [9], Zhu et al. [11],
Cai et al. [13], Berman et al. [12], and Cho et al. [2].
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Input image

He2011

Zhu2015

Cai2016

Berman2016

Cho2018

Proposed system

(a) (b) (c) (d)

Figure 10. Qualitative evaluation of different image dehazing methods on an aerial image depicting
a city center. (a–d) correspond to four haze conditions: haze-free, thin, moderate, and dense. The
ρI values of input images are 0.8581, 0.8974, 0.9135, and 0.9556, respectively. He2011, Zhu2015,
Cai2016, Berman2016, and Cho2018 denote five benchmark methods of He et al. [9], Zhu et al. [11],
Cai et al. [13], Berman et al. [12], and Cho et al. [2].
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Input image

He2011

Zhu2015

Cai2016

Berman2016

Cho2018

Proposed system

(a) (b) (c) (d)

Figure 11. Detection results for a YOLOv4-based high-level object recognition algorithm operating
on images in Figure 9. (a–d) correspond to four haze conditions: haze-free, thin, moderate, and dense.
The ρI values of input images are 0.8771, 0.9026, 0.9279, and 0.9594, respectively. He2011, Zhu2015,
Cai2016, Berman2016, and Cho2018 denote five benchmark methods of He et al. [9], Zhu et al. [11],
Cai et al. [13], Berman et al. [12], and Cho et al. [2]. Notes: cyan labels represent airplanes, navy-blue
labels represent birds, and green labels represent clocks.
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5. Conclusions

This paper presented an FPGA-based autonomous dehazing system that could handle
real-time DCI 4K images/videos. Starting from the position that the currently predominant
deep approach represented overkill, we analyzed a non-deep approach for autonomous im-
age dehazing. Under this approach, the fundamental idea was to combine the input image
and its dehazed result according to the haze condition. After that, we adopted pipelining,
fixed-point design, and split multiplying to devise a 4K-capable FPGA implementation. We
then conducted a comparative evaluation with other benchmark hardware designs to verify
its efficacy. In addition, we presented a performance evaluation on outdoor and aerial
images to demonstrate its effectiveness in various circumstances, rendering the proposed
implementation highly relevant to real-life systems (such as autonomous driving vehicles
and aerial surveillance).

Furthermore, we pointed out two inherent limitations of the proposed system: han-
dling haze-free images with a broad and homogeneous background and handling hazy
night-time images. Since the adopted HDE discriminated the haze condition of these im-
ages incorrectly, the self-calibration feature did not function as intended. Such limitations
notwithstanding, the proposed system is deemed to be reliable due to the HDE’s high
reliability for haze condition discrimination.
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Appendix A

This appendix discusses the design of serial and parallel dividers in arithmetic macros.
Figure A1 depicts the datapath and state machine for realizing the former type, which is
appropriate for dividing user-defined parameters. The datapath consists of three main
registers: the (M + N)-bit holder, N-bit divisor, and Q-bit quotient. There is also an
implicit counter to signify the completion of division. Upon the transition from IDLE to
OPERATION, the holder is loaded with an M-bit dividend at the least significant positions
and zero-padded to (M + N) bits.

According to the state machine, the operation is relatively straightforward. Upon reset,
the serial divider is in the IDLE state. When the start signal occurs, this changes to the
OPERATION state, and loads the dividend and divisor into holder and divisor registers.
In this state, if the divisor is equal to zero, the divider changes to the ERROR state and
produces a flag to signify division by zero. After that, it returns to the IDLE state. Otherwise,
it starts the implicit counter and compares the divisor to every bit of the dividend, beginning
with the most significant bit and proceeding according to the comparison result. It also
generates quotient bits, and shifts them to the quotient register at the least significant
position. When the quotient register captures all Q bits, the counter produces a signal to
trigger a transition to the DONE state. The divider then returns to the IDLE state and waits
for the next call.

https://doi.org/10.6084/m9.figshare.14729052.v1
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Figure A1. Datapath and state machine of the serial divider. The blue arrow is adopted to signify no
intersection. MSB and LSB stand for most significant bit and least significant bit.

It is noteworthy that the serial divider cannot accept new input data during operation.
Therefore, it is inappropriate for dividing back-to-back pixel data. To address this problem,
we eliminate the state machine, and put Q copies of the datapath (without an implicit
counter) into a processing pipeline. In this context, the holder, divisor, and quotient registers
of a particular copy are connected to those of the next copy, as Figure A2 shows. This
parallel divider can handle a continuous pixel data flow but it requires more hardware
resources than the serial divider.

QuotientFirst stage

Dividend

Divisor
Second stage

Holder

Divisor

Quotient Third stage Last stage Quotient

Q stages

• • •

• • •

• • •

Holder

Divisor

Quotient

Holder

Divisor

Holder

Divisor

Quotient

Figure A2. Datapath of the parallel divider.

Appendix B

This appendix discusses the design of square rooters in arithmetic macros. There are
serial and parallel square rooters, but we utilized only the parallel design in the proposed
autonomous dehazing system. Figure A3 depicts the datapath of the parallel square rooter.
The input datum is an M-bit squarand, and the output datum is an S-bit sqrt. The operation
principle is similar to that of dividers, except that the square rooter takes every two-bit
group of the squarand (beginning with most significant bits) for comparison.
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