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Abstract: The acquisition of digital images is susceptible to haze, and images captured under such
adverse conditions may impact high-level applications designed for clean input data. Image dehazing
emerges as a practical solution to this problem, as it can be employed to pre-process images imme-
diately after acquisition. This paper presents a concise review of impactful algorithms, including
those based on deep learning models, to identify the existing gap in real-time processing capabilities.
Subsequently, a real-time dehazing system on a multiprocessor system-on-a-chip (MPSoC) platform
is introduced to bridge this gap. The proposed system balances the trade-off between dehazing
performance and computational complexity; hence, the name “Symmetric” is coined. Additionally,
the entire system is implemented in programmable logic and wrapped by an interface circuit sup-
porting double-buffering, rendering it highly suitable for seamless integration into existing camera
systems. Implementation results on a Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit demonstrate
a maximum operating frequency of 356.51 MHz, equivalent to a maximum processing speed of
40.27 frames per second for DCI 4K resolution.

Keywords: image dehazing; deep learning; real-time processing; MPSoC

1. Introduction

Image dehazing (also known as image defogging or visibility restoration) is a long-
standing problem in computer vision due to its ill-posed nature. One of the earliest
attempts at addressing this challenging problem dates back to the work of Vincent [1] in
1972. Over the years, a myriad of relevant studies have emerged, ranging from heuristic ap-
proaches (such as enhancement-based [2,3] and prior-based [4,5] methods) to data-driven
techniques (such as deep learning methods [6–9]). As a result, the research field has
now matured, with a strong focus on practical and application-oriented solutions, where
dehazing algorithms are required to be computationally efficient for broad deployment.
An illustrative example of this trend can be found in Adobe’s integration of image dehazing
capabilities within the Camera Raw plugin of its renowned image editing application,
Photoshop [10].

Recent years have witnessed rapid developments in self-driving vehicles and smart
surveillance systems, where computer vision algorithms play crucial roles. Integrating
image dehazing into these systems presents a key requirement, that is, processing speed.
For instance, Bosch’s multi-purpose camera [11] is a system-on-a-chip (SoC) device de-
signed for video-based driver assistance systems, and it can generate up to 45 frames per
second (fps) at 2048 × 1280 resolution. If a dehazing algorithm with a processing speed of
10 fps were to be implemented, a bottleneck would arise, leading to significant performance
loss. To maintain the high performance and smooth functioning of Bosch’s camera, the de-
hazing algorithm must handle images at a minimum speed of 25 or 30 fps, depending on
whether the video encoding system is PAL or NTSC. This example highlights the critical
importance of processing speed in real-time computer vision systems.
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The following section summarizes the five-decade development of image dehazing,
with a primary focus on daytime single-image approaches. It also highlights a trade-off
between performance and algorithmic complexity. Sections 3 and 4 then detail the proposed
solution based on multiprocessor system-on-a-chip (MPSoC) to balance this trade-off. Our
contributions can be summarized as follows:

• We incorporate a self-calibrating feature, enabling the proposed algorithm to handle
various haze conditions effectively.

• We present a real-time high-quality hardware implementation, facilitating the practical
deployment of the proposed algorithm.

Experimental results are also presented to validate the real-time processing capability and
performance, comparing the proposed solution with the base algorithm and state-of-the-art
methods. Section 5 discusses future development directions and concludes the paper.

2. Image Dehazing Chronicle

Generally, image dehazing algorithms can be broadly categorized into two groups:
heuristic and data-driven methods. These two categories differ in the origin of the uti-
lized image features. Specifically, heuristic methods are grounded on handcrafted features
discovered through engineering efforts. Conversely, data-driven methods focus on archi-
tecture design to learn the most representative features from the abundant data. This paper
further classifies heuristic methods into enhancement-based and prior-based and data-
driven methods into restoration-based and generation-based approaches. The following
subsections chronicle major milestones in the development of single-image dehazing, along
with high-impact studies exemplifying each individual category.

2.1. Heuristic Methods
2.1.1. Enhancement-Based Approach

The presence of haze causes atmospheric scattering and absorption, wherein part
of the incoming light scatters directly into the camera’s aperture, leading to increased
brightness. The remaining light attenuates in the transmission medium before reaching
the aperture, resulting in faintness. Consequently, hazy images exhibit poor visibility.
To address this, enhancement-based methods aim to improve low-level features such as
contrast and brightness. For example, Kim et al. [2] introduced the block-overlapped
histogram equalization method, which spreads out highly populated intensities to enhance
global contrast. This computationally inexpensive method is suitable for mobile phones
and security cameras. However, for images with imperceptible background noise, this
method may increase noise contrast, reducing the signal-to-noise ratio (SNR).

In line with this, Oakley and Satherley [3] proposed a physical-model-based contrast
enhancement method to compensate for the adverse effects of a turbid atmosphere on
digital images. They also noticed the SNR reduction problem and devised a temporal filter,
but the problem persisted. Ancuti and Ancuti [12] adopted multiscale image fusion to
alleviate the visibility reduction problem. They transformed a single input image using
white balance and contrast enhancement to generate multiple variants of the input for
image fusion. After that, they constructed Laplacian pyramids and conducted fusion using
guidance weights derived from saliency, luminance, and chrominance. While multiscale
image fusion guarantees dehazing results with fine details, it can hinder real-time hardware
implementation due to up-sampling and down-sampling processes that require many
frame buffers.

Similarly, Galdran [13] attempted to reverse the effects of atmospheric scattering and
absorption through multiscale image fusion. A single input image undergoes artificial
under-exposure and contrast enhancement to mitigate the haze-induced problems of bright-
ness increase and contrast degradation. The resulting variants, expressed as Laplacian
pyramids, are then input into the fusion process, where the weighting function is derived
from the pixel-wise contrast and saturation maps, and while artificial under-exposure
renders this method robust to noise amplification, it can also darken the dehazing results.
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2.1.2. Prior-Based Approach

Enhancement-based methods focus on visibility restoration by manipulating low-level
features, but they often overlook haze’s impact on image degradation. To address this,
researchers have modeled image formation in a turbid atmosphere using optical physics,
with the most widely used model being the Koschmieder model.

I(x) = J(x)t(x) + A[1 − t(x)], (1)

where I ∈ RH×W×3 denotes the hazy image, J ∈ RH×W×3 the clean image, t ∈ RH×W the
transmission map, and A ∈ R1×1×3 the global atmospheric light. H and W represent the
height and width of images, and x denotes the spatial coordinates of pixels. The terms
J(x)t(x) and A[1 − t(x)] correspond to the multiplicative and additive attenuation of
the incoming light due to absorption and scattering. This model assumes a constant
transmission map across color channels, whereas in reality, it is wavelength-dependent.

Another approach, prior-based methods, leverages prior knowledge to estimate the
transmission map and global atmospheric light, then reverses Equation (1) to restore
visibility. He et al. [4] proposed that in local image patches (excluding white and bright
regions), pixels have extremely low intensities in at least one color channel, a concept known
as the dark channel prior. For a local patch Ω(x) centered at x, this prior is represented
by Equation (2). By substituting I, A, and t for J, a direct relation between A and t is
established. He et al. [4] also suggested that the global atmospheric light corresponds to
the brightest pixel in the top 0.1% of highest intensities in the dark channel.

min
y∈Ω(x)

[
min

c∈{R,G,B}
Jc(y)

]
≈ 0. (2)

Despite its simplicity, the method devised by He et al. [4] is highly effective, though it
may cause color distortion in the sky region where the dark channel prior does not hold.
Combining multiple priors can help address these limitations. For instance, Tang et al. [14]
adopted random forest regression to estimate the transmission map from four image
features: dark channel, contrast, saturation, and hue disparity, extracted at four different
scales. They adapted the method of He et al. [4] by using the median (instead of the largest)
of the top 0.1% of dark channel values for atmospheric light, improving robustness at the
cost of a prolonged execution time.

The prior knowledge presented in the aforementioned dehazing solutions is verifiable
with local image patches but not with global image context. Accordingly, Berman et al. [15]
introduced a non-local prior, noting that colors in clean images form tight clusters in
RGB space, spread throughout the image. They employed k-means clustering to identify
these clusters and infer transmission values from their distance to the camera. The global
atmospheric light estimation was similar to the method of He et al. [4]. This non-local
prior is effective and versatile, as demonstrated in [16–18]. However, it shares common
problems with other prior-based methods, such as a tendency to produce over-saturated
dehazing results.

2.2. Data-Driven Methods
2.2.1. Restoration-Based Approach

To enhance the generalizability of dehazing algorithms, researchers have incorporated
deep learning techniques, notably convolutional neural networks (CNNs). Cai et al. [6]
proposed DehazeNet, which infers the transmission map from a single image. The approach
employs a CNN to extract low-level features like contrast, saturation, and edge details.
Maxout layers enhance feature robustness, and convolutional layers with different kernel
sizes induce scale-invariant characteristics. Multiscale features undergo a max-pooling layer
to enhance resilience against minor displacements in the input image. Finally, a bilateral
ReLU performs nonlinear regression to estimate the transmission map. Cai et al. [6] utilized
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the method of He et al. [4] to obtain the global atmospheric light, necessary for recovering
clean images based on the Koschmieder model.

Haze-induced image degradation affects all red, green, and blue channels. However,
Wang et al. [19] observed that it predominantly impacts the luminance channel. They
developed a lightweight variant of DehazeNet to estimate the transmission map from
the image’s luminance, reducing computational costs while maintaining performance.
Dudhane and Murala [20] extended the research of Cai et al. [6] and Wang et al. [19] by
employing two DehazeNet-like networks to estimate two transmission maps in RGB and
YCbCr color spaces, combining them with a fusion network to obtain the final transmission
map. This method improved performance but increased computational costs. Recently,
Sahu et al. [21] presented a dual-channel DehazeNet to improve the accuracy of transmis-
sion map estimation. To attain computational efficiency, they implemented their proposed
model on an FPGA board, where the input images were downsampled to 32 × 32 pixels for
real-time processing.

Ren et al. [22] proposed an alternative approach, which has also been widely referenced
in subsequent studies. They devised a deep CNN that estimates the transmission map in a
coarse-to-fine manner. They employed convolutional layers with large receptive fields to
learn the coarse structure and layers with small receptive fields to refine the transmission
map, ensuring smoothness while preserving discontinuities.

Despite their potential for learning complex and abstract patterns from images,
the aforementioned methods solely utilized CNNs for estimating the transmission map.
Additionally, the lack of real ground-truth data for training CNNs limits these methods,
rendering them susceptible to the domain-shift problem.

2.2.2. Generation-Based Approach

The seminal work of Goodfellow et al. [23] on generative adversarial networks, cou-
pled with the increasing adoption of the autoencoder architecture [24], has given rise to
generation-based dehazing. Pan et al. [25] proposed a physics-based network involving
hazy–clean generation followed by clean–hazy regeneration, using a separate discriminator
to ensure consistency with the real input. The authors also incorporated the Koschmieder
model to facilitate the regeneration. However, the network’s capability is constrained by
this physical model and may fail with complex phenomena.

In contrast to the method of Pan et al. [25], Liu et al. [26] improved upon previous
work [27] with GridDehazeNet+, an enhanced multiscale network that dehazes images
and is purely data-driven without relying on the Koschmieder model. GridDehazeNet+
processes images through pre-processing, multiscale image fusion, and post-processing
stages. The multiscale processing employs a grid-like data flow with self-attention to
combine data at different scales. Liu et al. [26] also addressed the domain-shift problem by
utilizing intra-task knowledge transfer, training a teacher network with synthetic images
and initializing a student network with its weights, then training with translated images
via CycleGAN [28]. Anecdotally, using these translated images for model training is a
provisional solution to the domain-shift problem, as they are still artificially generated.

Inspired by the concept of layer disentanglement [29], Li et al. [30] introduced an
unsupervised network, which was trained to generate the transmission map and global
atmospheric light in addition to the clean image. By reconstructing the hazy image using
the Koschmieder model, the network can supervise itself during parameter optimization.
This self-supervision capability significantly aids data preparation, though lacking clean
image domain knowledge may hinder an optimal parameter search.

Recently, Xu et al. [8] introduced a U-Net-like network for video dehazing with a
multiscale encoder and a prior-scene decoder. The multiscale encoder extracts feature
maps at various scales, while the prior-scene decoder layers learn features related to the
prior and scene. Recurrent features from adjacent video frames are aligned and aggregated
to generate the clean image. The network, trained on synthesized hazy videos, remains
susceptible to the domain-shift problem and fails to meet real-time processing requirements.
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Wu et al. [9] sought to mitigate the domain-shift problem by incorporating diverse
degradation types in hazy image synthesis, modifying the Koschmieder model to adjust
light conditions, atmospheric light color bias, and JPEG compression effects. However,
given that the distribution of the synthesized hazy images does not align with that of real
hazy images, their proposed method remains a provisional solution. Sahu et al. [31] pro-
posed Oval-Net, an encoder–decoder network with spatial and channel attention mech-
anisms, for end-to-end image dehazing. Oval-Net was trained using synthetic datasets,
and the authors acknowledged that this could reduce the network’s reliability in real-
world circumstances.

The primary concern with deep-learning-based methods is their high computational
complexity. Even a simple network for image classification can contain millions of pa-
rameters, necessitating significant effort for hyper-parameter tuning and hindering fast
and efficient implementation for widespread deployment. Chen et al. [32] addressed
these challenges with a lightweight dehazing network using an autoencoder architecture,
incorporating difference convolution to integrate low-level prior information and a content-
guided attention mechanism for handling haze heterogeneity; while this network exhibited
relative speed and efficiency, it still falls short of real-time high-quality image processing.

Most data-driven methods are trained on a mix of synthetic and real-world images.
With the increasing prevalence of text-to-image models like StableDiffusion [33] and DALL-
E 2 [34], this trend is expected to continue. Nonetheless, the inclusion of synthetic images
may exacerbate the domain-shift problem, as discussed by Shumailov et al. [35]. Artificially
generated images do not share a similar distribution with real-world images, potentially
reducing network generalizability.

In summary, data-driven methods have demonstrated superior performance over
heuristic approaches in various computer vision tasks. Nevertheless, their limitations, such
as high computational cost and limited generalizability, may render them less favorable for
practical applications.

2.3. Summary

Table 1 presents a summary of the daytime single-image dehazing methods discussed
above. Generally, heuristic methods are computationally efficient but susceptible to noise,
and their results tend to align with human perception. However, they may face challenges
when applied to diverse circumstances. On the other hand, data-driven methods offer
improved generalizability but come with a higher computational cost, and their results often
align better with quantitative assessment metrics. Notably, nearly all data-driven methods
are susceptible to the domain-shift problem due to the lack of real-world training images.

Table 1. Summary of daytime single-image dehazing chronicle.

Category Representative Studies Pros and Cons

Heuristic

Enhancement-based [2,3,12,13]
Pros

Low computational cost
Subjectively favoring results

Prior-based [4,14,15]
Cons

Noise amplification
Lack of generalizability

Data-driven

Restoration-based [6,19,20,22]
Pros

Improved generalizability
Quantitatively favoring results

Generation-based [8,25,26,30,32]
Cons

High computational cost
Domain-shift problem

More importantly, data-driven methods often require graphics processing units (GPUs)
for model inference. Since this computing platform is power-consuming and expensive,
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it is unsuitable for implementation on edge devices, such as CCTVs or cameras mounted
on autonomous driving vehicles. In sharp contrast, the proposed MPSoC-based solution
presented in the following section is fast and compact, occupying less than one-fifth
of the hardware resources available on a mid-size FPGA device (XCZU7EV-2FFVC1156),
as demonstrated in Section 4.2. This makes the proposed MPSoC-based solution a preferable
option over data-driven methods for real-time high-quality image dehazing.

3. Proposed Algorithm

As data-driven methods are not yet ready for widespread deployment, this paper
presents an alternative for real-time high-quality single-image dehazing: a symmetric
MPSoC-based solution that balances the trade-off between dehazing performance and
computational complexity. Building upon our previous work of linear-time single-image
dehazing [36], the proposed algorithm incorporates the following features (as illustrated in
Figure 1):

• A self-calibrating feature that enables the algorithm to handle different haze conditions
effectively.

• A real-time high-quality hardware implementation that facilitates the practical de-
ployment of the proposed algorithm.

Haziness degree 

estimation

Self-calibrating 

factor calculation

Input 

image

Output 

image

Unsharp 

masking

Scene depth estimation based on 

image saturation and brightness

Transmission map 

estimation

Scene 

recovery

Color gamut 

expansion

Base algorithm

Proposed algorithm

Figure 1. Block diagram of the proposed algorithm.

3.1. Base Algorithm

In [36], we presented an O(N) dehazing method, where N denotes the number of
image pixels. This method enhances the visibility of hazy images through several steps.
Initially, a pre-processing step involving unsharp masking is applied to the input image
to enhance edge details based on local image statistics. Next, image visibility is restored
using a dehazing step grounded on the improved color attenuation prior. However, this
dehazing step may introduce artifacts like dynamic range reduction. To address this, a post-
processing step, namely color gamut expansion, is employed to ensure an artifact-free
output. Interested readers are referred to [36] for a more comprehensive description.

Let P , D, and H denote the pre-processing, dehazing, and post-processing stages of
the base algorithm. The clean image J is derived from the hazy image I as follows:

J = H{D[P(I)]}, (3)

where spatial coordinates are omitted for clarity. The responses of these three stages to input
images are fixed, irrespective of whether images are affected by haze. Hence, the following
subsection outlines our contribution in adopting a haziness degree estimator [37] to make P ,
D, and H aware of haze conditions. More precisely, we introduce a self-calibrating weight
ω into P , D, and H to restore the clean image as J = H{ω,D[ω,P(ω, I)]}. Depending on
the haze condition of the input image, the value of ω varies, thus enabling the fine-tuning
of all three processing stages for appropriate enhancement.

In [36], we demonstrated that the base algorithm achieves performance comparable
to data-driven methods, such as those proposed by Cai et al. [6] and Ren et al. [22], while
exhibiting significantly lower computational costs. However, real-time processing require-
ments through software implementation remain challenging. The fastest implementation,
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representing the base algorithm, processes only ten 640 × 480 frames per second (fps),
falling short of the desired 25 fps.

The subsequent subsections focus on two main aspects. Firstly, efforts are made
to incorporate a self-calibrating feature into the base algorithm to enhance performance
further. Secondly, a comparative evaluation is conducted to assess the effectiveness of the
proposed improvements. Additionally, Section 4 presents an MPSoC-based solution to
address the real-time processing constraint.

3.2. Self-Calibration on Haze Conditions

The Koschmieder model describes the transmission map t(x) as an exponential func-
tion of the scene depth d(x), denoted as t(x) = exp[−β · d(x)], where β represents the
atmospheric scattering coefficient. This implies that the haze distribution depends on scene
depth, allowing the dehazing algorithm to handle various types of haze, from mild to
dense. In a prior study [38], we introduced a framework for generating a piece-wise linear
weight using the haziness degree estimator [37]. This weight is combined with the scene
depth in a multiplicative manner to address different scenarios:

• Haze-free images. The weight is set to zero, zeroing the scene depth. Consequently,
t(x) = 1 is achieved throughout the image, meaning that no image dehazing is
performed.

• Mildly-to-moderately hazy images. The weight assumes a value ωe, where 0 < ωe < 1,
based on the haziness degree estimate, reducing the dehazing power to prevent artifacts.

• Densely hazy images. The weight is set to one, imposing no constraints on the scene
depth, allowing maximum dehazing power.

By incorporating this adaptive weight, the base algorithm can effectively adapt to
various haze conditions, improving results for different types of hazy images. Figure 2a
illustrates this weighting scheme, where ω and ρ represent the weight and haziness degree
estimate, respectively. The haziness degree range is divided into three regions using two
predefined parameters, ρ1 and ρ2. The weighting scheme is expressed as follows:

ω =


0 ρ < ρ1

ρ − ρ1

ρ2 − ρ1
ρ1 ≤ ρ ≤ ρ2

1 ρ > ρ2

. (4)

In [38], evaluation results indicated that dehazing performance for densely hazy
images was unimpressive, suggesting that greater dehazing power might improve results.
Consequently, in this study, we have modified the original weighting scheme by allowing
the weight (ω) to extend beyond the range [0, 1], up to a predefined value of W , as illustrated
in Figure 2b. This modification enables the algorithm to effectively “see” through a thicker
haze, surpassing the capabilities of prior-based dehazing methods. The proposed weighting
scheme is expressed as follows:

ω =



0 ρ < ρ1

ρ − ρ1

ρ2 − ρ1
ρ1 ≤ ρ ≤ ρ2(

W − 1
1 − ρ2

)
ρ +

1 −Wρ2

1 − ρ2
ρ > ρ2

. (5)

Figure 2 illustrates a comparison between the original weight presented in [38] and
our proposed weight to highlight their differences. It features a densely hazy image from
the IVC dataset [39] and showcases two dehazing results obtained using the two weights,
respectively. Parameters ρ1 and ρ2 are set to 0.8811 and 0.9344, as described in [40], and W
is fixed at 1.2. Subjective evaluation shows that the dehazing result in Figure 2d is less
favorable compared to the result with our proposed weight in Figure 2e.
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Our contribution extends beyond the weighting scheme, including how the self-
calibrating weight is incorporated into the algorithm. In [38], the self-calibrating weight
was applied to both the dehazing and post-processing stages, while the pre-processing stage
remained unchanged. The pre-processing stage focused on white-balancing the input image
to skip the estimation of the global atmospheric light A (in [38], the global atmospheric
light was set to a fixed value of {1, 1, 1}, under the assumption that image intensities were
normalized within the range [0, 1]). In contrast, the proposed algorithm uses unsharp
masking in the pre-processing stage to enhance distant edge details obscured by haze.
Consequently, we have also equipped this pre-processing stage with the self-calibrating
weight to prevent overshooting in haze-free images.

0 1

1

𝜔

𝜌
𝜌1 𝜌2

(a)

0 1

1

𝜔

𝜌
𝜌1 𝜌2

𝒲

(b)

(c) (d) (e)

Figure 2. Illustration of piece-wise linear weights for incorporating the self-calibrating feature. (a) The
original weight presented in [38]. (b) Our proposed weight. (c) A densely hazy image. (d) Dehazing
result with the original weight. (e) Dehazing result with the proposed weight.

3.3. Objective Evaluation

To validate the performance of the proposed algorithm, we conducted a compar-
ative analysis against four methods, including the base algorithm and those proposed
by Cai et al. [6], Liu et al. [27], and Li et al. [30]. We used five public datasets for eval-
uation: FRIDA2 [41], D-HAZY [42], O-HAZE [43], I-HAZE [44], and Dense-Haze [45].
The benchmark methods have been introduced in Section 2.

The FRIDA2 dataset consists of 320 computer-rendered images of road scenes, with 66 haze-
free and 264 hazy images representing four distinct haze conditions. D-HAZY is another syn-
thetic dataset containing 1472 pairs of indoor hazy/clean images, where haze was synthesized
using scene depth information from a Microsoft Kinect camera. In contrast, O-HAZE, I-HAZE,
and Dense-Haze are real-world datasets consisting of 45, 30, and 55 image pairs, respectively,
depicting outdoor, indoor, and both outdoor and indoor scenes.

To assess the experimental results, we employed two metrics: feature similarity ex-
tended to color images (FSIMc) [46] and tone-mapped image quality index (TMQI) [47].
Both metrics provide scores ranging from zero to one, where higher scores indicate better
results. The obtained FSIMc and TMQI scores for each dataset, along with their average
scores, are presented in Table 2.



Symmetry 2024, 16, 653 9 of 15

The results demonstrate that the proposed algorithm, enhanced with the new self-
calibrating weighting scheme, consistently outperforms the base algorithm in all test
scenarios. Additionally, it is also ranked higher than the other three data-driven bench-
mark methods. This result suggests that even though the proposed method is a heuristic
approach, it effectively addresses the limitation of limited generalizability, thanks to the
new weighting scheme. With its efficacy confirmed, the next section will introduce a
corresponding hardware accelerator to enhance its practical usability.

Table 2. Objective evaluation using feature similarity extended to color images (FSIMc) and tone-
mapped image quality index (TMQI). The best results are highlighted in bold.

Dataset
FRIDA2 [41] D-HAZY [42] O-HAZE [43] I-HAZE [44] Dense-Haze [45] Overall

Method

FS
IM

c

Cai et al. [6] 0.7963 0.8874 0.7865 0.8482 0.5573 0.7725
Liu et al. [27] 0.8003 0.8747 0.8030 0.7416 0.5564 0.7552
Li et al. [30] 0.7849 0.7383 0.6997 0.7564 0.5763 0.7111

Base algorithm [36] 0.8016 0.8763 0.8112 0.8586 0.5728 0.7807
Proposed algorithm 0.8029 0.8733 0.8265 0.8677 0.5799 0.7846

TM
Q

I

Cai et al. [6] 0.7366 0.7966 0.8413 0.7598 0.5723 0.7312
Liu et al. [27] 0.6970 0.7938 0.8267 0.6107 0.5196 0.6896
Li et al. [30] 0.7176 0.6817 0.6566 0.6936 0.5107 0.6520

Base algorithm [36] 0.7242 0.7841 0.8951 0.8204 0.5921 0.7354
Proposed algorithm 0.7244 0.7790 0.8913 0.8101 0.6040 0.7357

4. MPSoC-Based Solution
4.1. Real-Time Hardware Implementation

Previous studies [32,36] have reported that software implementations of dehazing
algorithms are unable to achieve a processing speed of at least 25 fps, failing to meet
real-time processing requirements. This observation underscores the critical need for hard-
ware implementation. In this study, we develop a hardware accelerator for the proposed
algorithm using Verilog HDL [48] (IEEE Standard 1364-2005) and validate its performance
on a Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit [49].

Before implementing the hardware accelerator, let us revisit the block diagram in
Figure 1. It is important to note that all operations in the base algorithm, including unsharp
masking, image dehazing, and color gamut expansion, are pixel-wise. In contrast, our
additions to the base algorithm, involving haziness degree estimation and self-calibrating
factor calculation, are performed on a per-frame basis. This difference poses a challenging
problem in synchronizing data flows within the proposed algorithm. Delaying unsharp
masking, image dehazing, and color gamut expansion until the haziness degree estimate
becomes available is impractical, as it leads to flickering issues.

To address this problem, we leveraged the high similarity between consecutive video
frames, a common characteristic in various video types resulting from the natural continuity
of motion and scenes in real-world scenarios. Numerous video processing and analysis
techniques, such as motion estimation, video stabilization, object tracking, and video
compression, have effectively exploited this characteristic.

Figure 3 shows a plot of structural similarity values [50] for the initial 300 frames of a
video. The plot demonstrates that each frame exhibits a strong resemblance to its preceding
and following frames, as indicated by the red-dotted oval, except during abrupt video
changes highlighted by the blue-dotted and pink-dotted ovals. Given the infrequency of
these scene changes, it is feasible to compute the haziness degree estimate for a specific
frame and apply the computed value to the subsequent frame. This approach not only
addresses the synchronization problem but also significantly reduces the required hardware
resources for implementation.



Symmetry 2024, 16, 653 10 of 15

After addressing the synchronization problem, the proposed algorithm can be readily
implemented at the register-transfer level using standard design techniques. It is parti-
tioned into blocks similar to the block diagram in Figure 1. By exploiting the pipeline
parallelism, each block corresponds to a processing stage in the pipeline, allowing si-
multaneous processing of pixels from the previous stage, thus increasing the throughput.
The resulting hardware accelerator is then encapsulated by an interface circuit to adhere to
the AXI bus communication protocol [51]. Our interface circuit supports a double-buffering
scheme, enabling the accelerator to seamlessly process the input video stream. Xilinx
Vivado v2019.1 [52] was employed to develop a hardware intellectual property (IP) and
program the Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit.

Frame number

SSIM

t + 3

t + 6t + 9

t

Figure 3. Plot of structural similarity (SSIM) values of the first 300 frames in a video. Red-dotted oval
indicates frames of similar SSIM values, while blue-dotted and pink-dotted ovals indicate frames of
abrupt changes in SSIM values.

Figure 4 provides an overview of our MPSoC-based solution. The input video stream
is processed by a verification platform running on a host computer. This platform acts
as an intermediary between our MPSoC-based solution and users. It receives, packages,
and sends commands received from users, as well as video data, to our hardware IP within
the evaluation kit. The kit features a Zynq UltraScale+ MPSoC device, comprising a quad-
core ARM processor, a dual-core real-time processor, a graphics-processing unit, and a
mid-size FPGA device (XCZU7EV-2FFVC1156) [49]. The ARM processor is referred to
as the processing system (PS), and the FPGA device is referred to as the programmable
logic (PL). We have developed an application called the hardware controller, which runs
on the PS and is responsible for interfacing our hardware IP (located in the PL) with the
outside world.

In this setup, the verification platform acquires the video stream from a camera
and gathers user-inputted data through its graphical user interface. Following a hand-
shaking process, the platform forwards the collected data to the hardware controller in
the PS, which in turn relays the received data to the hardware IP in the PL. Subsequently,
the hardware IP processes the data and generates an interrupt signal upon completion.
The hardware controller acknowledges the signal and transmits the processed data back to
the verification platform, where the input–output data are displayed side-by-side to users
for ease of verification.
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On-chip memories

Hardware accelerator

Programmable logic

Hardware controller

Processing system

Verification

platform

Camera

Zynq UltraScale+ MPSoC ZCU106 Evaluation Kit

Host computer

Figure 4. Overview of the proposed MPSoC-based solution.

4.2. Hardware Implementation Results

We utilized Xilinx Vivado v2019.1 [52] to synthesize the proposed hardware IP on
the FPGA device. The implementation results, as summarized in Table 3, demonstrate
that our hardware IP occupies only a modest portion of the available hardware resources.
Specifically, it consumes 9.95% of slice registers, 19.86% of slice look-up tables (LUTs),
and 17.47% of block RAMs (BRAMs). The FPGA device used in this study belongs to the
Zynq UltraScale+ family, which features UltraRAMs and BRAMs. However, the proposed
hardware accelerator does not contain any frame buffers, only line memories for filtering
operations. Thus, BRAMs are adequate, leaving UltraRAMs available for other applications
requiring frame buffers.

Table 3. Hardware implementation results for the proposed algorithm. LUT stands for look-up table,
and the symbol # denotes quantities.

Xilinx Vivado v2019.1
Device XCZU7EV-2FFVC1156

Slice Logic Utilization Available Used Utilization
Slice registers (#) 460,800 45,832 9.95%

Slice LUTs (#) 230,400 45,761 19.86%
BRAMs 312 54.5 17.47%

Minimum period 2.81 ns
Maximum frequency 356.51 MHz

Furthermore, Table 3 shows that the proposed hardware accelerator can operate with a
minimum clock period of 2.81 nanoseconds, allowing it to handle up to 356.51 megapixels
per second. The maximum processing speed (Smax) in fps for a given frame’s resolution of
H × W can be calculated as follows:

Smax =
fmax

(H + VB)(W + HB)
, (6)

where fmax represents the maximum frequency reported in Table 3, and VB and HB denote
the vertical and horizontal blank periods, respectively. Table 4 presents the Smax values
for various resolutions, ranging from Full HD (1920 × 1080) to DCI 4K (4096 × 2160),
demonstrating that the proposed hardware IP exceeds the real-time processing requirement.
For DCI 4K resolution, it achieves a maximum processing speed of 40.27 fps, making it
highly suitable for real-world computer vision systems, irrespective of the color encoding
scheme employed.

Moreover, we conducted a comparative assessment of the proposed accelera-
tor with existing designs for single-image dehazing [53–55]. Park and Kim [53] and
Zhang and Zhao [54] presented their own approaches to implementing the method
of He et al. [4]. Specifically, they explored alternative methods to estimate the global
atmospheric light more cost-effectively. For instance, Park and Kim [53] divided the
image into 12 non-overlapping regions and searched for atmospheric light candidates
in each region. Subsequently, they selected the brightest pixel among the candidates as the
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atmospheric light. Meanwhile, Zhang and Zhao [54] approximated the atmospheric light
as the largest pixel in the locally filtered image (using a minimum filter).

Table 4. Maximum processing speeds in frames per second for various image resolutions. The symbol
# denotes quantities.

Standard Resolution Required Clock Cycles (#) Processing Speed (Smax)
Full HD 1920 × 1080 2,076,601 171.68

Quad HD 2560 × 1440 3,690,401 96.60

4K
UW4K 3840 × 1600 6,149,441 57.97

UHD TV 3840 × 2160 8,300,401 42.95
DCI 4K 4096 × 2160 8,853,617 40.27

Table 5 illustrates that our hardware IP has the smallest footprint in terms of slice
registers and LUTs while achieving the fastest processing speed. Notably, to the best of
our knowledge, the proposed hardware IP, along with our previous design in [55], are the
sole two hardware implementations equipped with the self-calibrating feature. Regarding
digital signal processors (DSPs), they tend to be costly and are specifically designed for
computationally intensive tasks, such as matrix multiplication in CNNs. Given that image
dehazing frequently serves as a pre-processing step in high-level computer vision systems, it
is preferable to reserve DSPs for more complex tasks like object recognition and localization.
In this context, both of our previous and proposed designs excel by eschewing the use of
DSPs. Through minimal resource utilization and objective evaluation, the proposed MPSoC-
based solution achieves a balance between dehazing performance and computational
complexity, hence termed “symmetric”.

Nonetheless, it is essential to acknowledge that our design necessitates a considerable
amount of memory, primarily utilized as line memories in filtering operations. Considering
the significant impact of these operations on the base algorithm’s performance, eliminating
them is not a viable option. In future studies, we will explore solutions to reduce memory
requirements without compromising performance.

Table 5. Comparison with contemporary hardware accelerators for single-image dehazing. NA
stands for not available, and the symbol # denotes quantities.

Hardware Utilization Park and Kim [53] Zhang and Zhao [54] Lee et al. [55] Proposed Design

Registers (#) 53,400 NA 53,216 45,832
LUTs (#) 64,000 NA 49,799 45,761
DSPs (#) 42 NA 0 0

Memory (Mbits) 3.2 NA 1.4 2.0
Maximum frequency (MHz) 88.70 116.00 271.37 356.51
Maximum video resolution SVGA Quad HD DCI 4K DCI 4K

Self-calibrating feature Unequipped Unequipped Equipped Equipped

5. Conclusions

In this paper, we introduce a symmetric MPSoC-based solution to address the growing
demand for real-time high-quality image dehazing. Our proposed method balances the
trade-off between dehazing performance and computational complexity. It enhances the
base algorithm by incorporating a self-calibrating feature, enabling efficient handling of
various haze conditions. Furthermore, we have improved the piece-wise linear weight-
ing scheme to enhance haze removal under dense-haze conditions. Subsequently, we
have designed a corresponding hardware accelerator using Verilog HDL and verified its
effectiveness against existing implementations.

However, we have identified three main limitations in our proposed solution. Firstly,
it is inefficient in memory usage due to the extensive utilization of filtering operations.
As these operations are crucial to the proposed algorithm’s performance, further refinement
of the design demands substantial effort. Secondly, the proposed algorithm relies on
several parameters that necessitate careful fine-tuning for optimal performance, which is a
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laborious and time-consuming process. Finally, there is no encryption applied to the image
data, posing a security risk. We defer the resolution of these three challenging problems to
future research endeavors.
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