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Abstract: Multiplication, division, and square root operations introduce significant challenges in
digital signal processing (DSP) systems, traditionally requiring multiple operations that increase
execution time and hardware complexity. This study presents a novel approach that leverages binary
logarithms to perform these operations using only addition, subtraction, and shifts, enabling a unified
hardware implementation—a marked departure from conventional methods that handle these opera-
tions separately. The proposed design, involving logarithm and antilogarithm calculations, exhibits an
algebraically symmetrical pattern that further optimizes the processing flow. Additionally, this study
introduces innovative log-domain correction terms specifically designed to minimize computation
errors—a critical improvement over existing methods that often struggle with precision. Compared
to standard hardware implementations, the proposed design significantly reduces hardware resource
utilization and power consumption while maintaining high operational frequency.

Keywords: unified hardware; multiplication; division; square root; binary logarithm

1. Introduction

Digital signal processing (DSP) systems perform tasks such as discrete cosine trans-
form, fast Fourier transform, and image filtering, which require intensive use of multipli-
cation, division, and square root operations. In a binary number system (BNS), standard
hardware implementations of these computationally complex operations are expensive in
terms of area, delay, and power consumption. Although fixed-point number representation
can reduce these complexities, it is prone to overflow and scaling issues. On the other hand,
floating-point number representation offers better precision and scaling but introduces
more overhead.

The logarithmic number system (LNS) combines the advantages of fixed-point and
floating-point number representations, namely, simplicity and precision. In the logarithmic
domain (hereinafter referred to as the log-domain), multiplication and division are trans-
formed into addition and subtraction, significantly simplifying hardware implementation.
Despite inevitable errors in computing the logarithms of input data, log-domain arithmetic
remains preferable in many DSP applications due to its benefits in reducing area, delay,
and power consumption.

Two traditional methods are widely used to compute logarithms: the Taylor’s series
expansion and the look-up table (LUT) [1,2]. The Taylor’s series method expresses the
logarithm as an infinite sum of terms, with the first (n + 1) terms constituting the nth
Taylor polynomial. Higher degrees of n yield more accurate approximations to the loga-
rithm. The LUT method, in contrast, uses a complete table of logarithms for all numbers.
Both methods require substantial memory, rendering them computationally inefficient.
To address this, Mitchell [3] proposed a straightforward method for computing logarithms
and antilogarithms using piece-wise linear approximations, which is memory-efficient and
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hardware-friendly, albeit at the cost of some accuracy. The logarithm error in Mitchell’s
approximation ranges from 0 to 0.08639, leading to corresponding absolute errors in log-
domain arithmetic operations: 11.1% for multiplication, 12.5% for division, and 2.9% for
square root.

Mitchell [3] also derived a correction term to reduce the error, but this term is computa-
tionally complex as it requires the use of Mitchell’s algorithm for input data multiplication.
Several approaches have been proposed to improve the accuracy of Mitchell’s approxima-
tion, broadly categorized into shift-and-add-based [4–6], LUT-based [7], and interpolation-
based [8] methods. These approaches divide the fraction of the logarithms into uniform or
non-uniform regions and compute a corresponding correction term for each region.

In this work, we investigate Mitchell’s algorithm and propose a unified hardware for
computing multiplication, division, and square root operations—an approach that, to the
best of our knowledge, has not been reported in the literature. Additionally, we propose a
method for correcting results in the log-domain, significantly simplifying hardware design.
Our contributions are twofold:

• We propose a unified and algebraically symmetrical hardware architecture capable of
performing multiplication, division, and square root operations.

• We introduce a log-domain correction scheme that enhances the accuracy of these
operations.

The remainder of this paper is organized as follows: Section 2 summarizes related
work, Section 3 details the proposed design and presents hardware implementation results,
and Section 4 concludes the paper.

2. Related Work

Figure 1 illustrates the typical block diagram of log-domain arithmetic operations.
Logarithm and antilogarithm calculations are responsible for BNS-to-LNS and LNS-to-BNS
conversions, respectively, forming the basis of the algebraically symmetrical characteristic
in these systems. It is noted that existing hardware designs typically support only one
type of operation—multiplication, division, or square root. Therefore, depending on the
operation, a corresponding circuit (adder, subtractor, or shifter) processes the logarithms to
yield the final result.

Logarithm

calculator
Input 1

Input 2

Result

Logarithm

calculator

Adder

Subtractor

Shifter

Antilogarithm

calculator

Figure 1. Block diagram of log-domain arithmetic operations.

Ahmed and Srinivas [9] utilized Mitchell’s correction term to design an iterative mul-
tiplier. By observing that truncating the least significant bits of fractional parts can reduce
the hardware complexity without significantly compromising precision, they developed
a fractional predictor to facilitate the computation. Also based on Mitchell’s correction
term, Wu et al. [10] presented an approximate multiplier with a similar operating princi-
ple, iteratively compensating for the multiplication error. However, as mentioned earlier,
the computation of Mitchell’s correction term involves input data multiplication, which
increases hardware size. Additionally, these two LNS multipliers are inefficient in terms of
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processing speed owing to their iterative nature, requiring multiple iterations to achieve a
tolerable error level.

Joginipelly and Charalampidis [11] presented an LNS multiplier optimized for filtering
applications. This work could be viewed as an improvement upon the previously discussed
iterative multiplier. To derive the hardware architecture, the authors sought filter weights
that minimize the mean square error between the approximate and true products. The use
of fixed filter weights aids in achieving a low error without increasing hardware size.
However, this approach also limits its applicability to general filtering applications.

Subhasri et al. [12] presented an LNS divider in which they sacrificed precision to
reduce hardware complexities. More specifically, they devised an inexact subtractor, which
is smaller than the standard subtractor as it ignores the carry bits from the least significant
bits of the fractions. However, the reduction in hardware utilization is subtle, and the error
slightly increases compared to Mitchell’s algorithm.

More recently, Niu et al. [13] and Kim et al. [14] extended Mitchell’s algorithm to
floating-point numbers. They presented single-precision and double-precision floating-
point multipliers and demonstrated their application in JPEG image compression and
neural network inference. Similarly, Norris and Kim [15] implemented an iterative mul-
tiplier for single-precision floating-point numbers. They used histogram stretching to
demonstrate the effectiveness of employing iterative multipliers instead of exact multipli-
ers, showing a 13% reduction in processing time for a 352 × 288 video.

While much research has been conducted on multipliers, most studies focus on sacri-
ficing precision to reduce power consumption and hardware complexity. Vakili et al. [16]
proposed an approach that converts fixed-point inputs to floating-point format to preserve
dynamic range. They utilized LUTs to approximate multiplication in floating-point format,
with a decoder converting the multiplication result back to fixed-point format. Compared
to the standard multiplier across four deep learning benchmarks, their approach achieved
a 64% reduction in LUT utilization with a minimal accuracy loss of less than 0.29%.

Ahmad et al. [17] leveraged two-dimensional pseudo-Booth encoding to design
floating-point pseudo-Booth and floating-point iterative pseudo-Booth multipliers. They
also enhanced conventional iterative multipliers with a steering circuit to reduce power con-
sumption. These two multipliers, compared to exact floating-point multipliers, exhibited
98.9% and 67.5% reductions in power consumption in TSMC 180 nm CMOS technology.

AMD Xilinx and Intel FPGA (Altera), the two largest FPGA manufacturers, currently
provide arithmetic IP cores for multipliers, dividers, and square rooters. However, due to
the insufficient documentation from Intel FPGA regarding the implementation of these
IP cores [18], we focused on the solutions provided by AMD Xilinx [19,20]. Although the
specific implementation details of their multipliers are not disclosed, the dividers utilize the
radix-2 non-restoring division method, and the square rooters are limited to floating-point
format. While using these IP cores can greatly reduce design time and accelerate time to
market, they are not always optimal in terms of delay and area. In some cases, they may
even become bottlenecks in the processing pipeline.

Interestingly, no studies on LNS square rooters have been reported in the literature.
Existing research has primarily focused on developing LNS multipliers and dividers
separately. In response to this gap, the following section introduces a unified hardware
design featuring a multiplication-division-square root (MDS) adder capable of performing
addition, subtraction, and shifting operations. This integration allows for the consolidation
of all primary LNS arithmetic operations into a single design. Additionally, we derive
correction terms for each operation and demonstrate that our proposed design substantially
reduces error compared to Mitchell’s algorithm.
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3. Proposed Design
3.1. Mitchell’s Algorithm-Based Logarithm Multiplication, Division, and Square Root

Let N be a binary number such that 2j ≤ N < 2k+1, where j, k ∈ Z and j ≤ k.
The binary representation of N is as follows:

N = nk . . . n3n2n1n0.n−1n−2 . . . nj, (1)

where ni ∈ {0, 1}, nk is the most significant bit, and nj is the least significant bit. With-
out loss of generality, let us assume nk = 1 and rewrite the number N as below:

N =
k

∑
i=j

2ini = 2k

(
1 +

k−1

∑
i=j

2i−kni

)
= 2k(1 + x), (2)

where x = ∑k−1
i=j 2i−kni. As j ≤ k, x is in the range 0 ≤ x < 1 and is called the fractional

part (or fraction).
The logarithm of N is lg(N) = k + lg(1 + x), where lg(·) denotes the base-2 log-

arithm. Mitchell [3] utilized a straight line to approximate lg(1 + x) as lg(1 + x) ≈ x,
significantly reducing computational complexities. Compared with the true logarithm,
Mitchell’s approximation results in an error in the range 0 ≤ R ≤ 0.08639.

The product of two numbers N1 and N2 can be expressed in the log-domain as follows:

lg(P) = lg(N1) + lg(N2) = k1 + lg(1 + x1) + k2 + lg(1 + x2) (3)

P = 2k1+k2(1 + x1)(1 + x2). (4)

Using Mitchell’s approximation, the product P can be approximated as:

lg(P′) = k1 + x1 + k2 + x2. (5)

Depending on whether a carry bit occurs when adding the fractional parts (x1 and x2),
lg(P′) can be expressed as follows:

lg(P′) =

{
k1 + k2 + (x1 + x2) x1 + x2 < 1

1 + k1 + k2 + (x1 + x + 2 − 1) x1 + x2 ≥ 1
. (6)

According to Mitchell’s approximation, lg(1 + x) ≈ x for 0 ≤ x < 1. Taking the
antilogarithm yields 2x ≈ 1 + x. As a result, the antilogarithm of Equation (6) is:

P′ =

{
2k1+k2(1 + x1 + x2) x1 + x2 < 1

21+k1+k2(x1 + x2) x1 + x2 ≥ 1
. (7)

The multiplication error Em is defined as:

Em =
P′ − P

P
=

P′

P
− 1 =


1 + x1 + x2

(1 + x1)(1 + x2)
− 1 x1 + x2 < 1

2(x1 + x2)

(1 + x1)(1 + x2)
− 1 x1 + x2 ≥ 1

. (8)

The quotient of two numbers N1 and N2 in the log-domain is the difference between
lg(N1) and lg(N2):

lg(Q) = k1 + lg(1 + x1)− k2 − lg(1 + x2) (9)

Q =
2k1+k2(1 + x1)

1 + x2
. (10)
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The approximation of Q is:

lg(Q′) = k1 + x1 − k2 − x2. (11)

Similar to the multiplication case, there are two expressions of lg(Q′) depending on
the presence or absence of a borrow from the integer part.

lg(Q′) =

{
k1 − k2 + (x1 − x2) x1 − x2 ≥ 0

k1 − k2 − 1 + (1 + x1 − x2) x1 − x2 < 0
(12)

Q′ =

{
2k1−k2(1 + x1 − x2) x1 − x2 ≥ 0

2k1−k2−1(2 + x1 + x2) x1 − x2 < 0
. (13)

The error Ed in division is defined as:

Ed =
Q′ − Q

Q
=

Q′

Q
− 1 =


(1 + x1 − x2)(1 + x2)

1 + x1
− 1 x1 − x2 ≥ 0

(2 + x1 − x2)(1 + x2)

2(1 + x1)
− 1 x1 − x2 < 0

. (14)

In the case of the square root, let N be the radicand. The logarithm of a square root is:

lg(S) =
1
2
[k + lg(1 + x)] (15)

S = 2k/2
√

1 + x. (16)

The approximation is:

lg(S′) =
1
2
(k + x) (17)

S′ = 2k/22x/2. (18)

The error Es in the square root is defined as:

Es =
S′ − S

S
=

S′

S
− 1 =

2x/2
√

1 + x
− 1. (19)

3.2. Error Analysis

It is evident from Equations (8), (14), and (19) that errors in multiplication, division,
and square root operations stem from the fractional parts. First, consider the multiplication
error in the case where x1 + x2 < 1, and let a = x1 + x2:

Em(x1 + x2 < 1) =
1 + a

1 + a + x2(a − x2)
− 1. (20)

Taking the partial derivative with respect to x2:

∂Em(x1 + x2 < 1)
∂x2

=
−(1 + a)(a − 2x2)

[1 + a + x2(a − x2)]2
= 0. (21)

Solving this equation yields:

a = 2x2 (22)

x1 = x2. (23)

The variable a = x1 + x2 is in the range 0 ≤ a < 1. At the two extremes, a = 0 and
a = 1, the multiplication error is Em = 0 and Em = −1/9, respectively. The negative sign
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implies that the approximated product is always less than the true product. The error is
maximum when x1 = x2 = 1/2, and the maximum error is Em = −1/9 ≈ −11.1%.

Similarly, consider the case x1 + x2 ≥ 1, with a = x1 + x2 now in the range 1 ≤ a < 2:

Em(x1 + x2 ≥ 1) =
2a

1 + a + x2(a − x2)
− 1 (24)

∂Em(x1 + x2 ≥ 1)
∂x2

=
−2a(a − 2x2)

[1 + a + x2(a − x2)]2
= 0 (25)

a = 2x2 (26)

x1 = x2. (27)

At the two extremes, a = 1 and a = 2, the multiplication error is Em = −1/9 and
Em = 0, respectively. Similar to the previous case, the maximum error of −11.1% occurs
when x1 = x2 = 1/2.

For the division error, we investigate two cases: x1 − x2 ≥ 0 and x1 − x2 < 0. For
x1 − x2 ≥ 0:

Ed(x1 − x2 ≥ 0) =
(1 + x1 − x2)(1 + x2)

1 + x1
− 1 =

x2(x1 − x2)

1 + x1
. (28)

Given 0 ≥ x1, x2 < 1, the division error is maximized when x1 approaches 1. Substi-
tuting x1 = 1 into Equation (28) yields:

Ed(x1 − x2 ≥ 0) =
x2(1 − x2)

2
(29)

∂Ed(x1 − x2 ≥ 0)
∂x2

= 1 − 2x2 = 0 (30)

x2 = 1/2. (31)

Here, the maximum error is Ed = 1/8 = 12.5% when x1 = 1 and x2 = 1/2. The minimum
error is zero when x1 = x2 or when x2 = 0.

For x1 − x2 < 0:

Ed(x1 − x2 < 0) =
(2 + x1 − x2)(1 + x2)

2(1 + x1)
− 1 =

(x2 − x1)(1 − x2)

2(1 + x1)
. (32)

Similarly, the error is maximized when x1 = 0:

Ed(x1 − x2 < 0) =
x2(1 − x2)

2
(33)

∂Ed(x1 − x2 < 0)
∂x2

= 1 − 2x2 = 0 (34)

x2 = 1/2. (35)

Thus, the maximum error Ed = 1/8 = 12.5% is achieved when x1 = 0 and x2 = 1/2.
The minimum error is zero when x1 = x2 or when x2 = 1.

The analysis of the square root error is as follows:

∂Es

∂x
=

[ln(2) · (1 + x)− 1]20.5x−1

(1 + x)1.5 = 0 (36)

x =
1

ln(2)
− 1 ≈ 0.443. (37)

The maximum error is approximately Es ≈ −0.029 = −2.9%. The minimum error is zero
when x = 0 or when x = 1.
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To summarize, computation errors can be as high as −11.1% for multiplication, 12.5%
for division, and −2.9% for square root. The approximated product and square root
are always less than the true product and square root, as indicated by the negative sign.
In contrast, the approximated quotient is always greater than the true quotient. Therefore,
in this work, we correct the errors using the following equations, inspired by the work of
Mclaren [21]:

Pcorrect =
P′

1 − Em
(38)

Qcorrect = Q′(1 − Ed) (39)

Scorrect =
S′

1 − Es
. (40)

Notably, performing the above corrections in the log-domain is more computationally
efficient, as the division and multiplication transform into addition and subtraction:

lg(Pcorrect) = lg(P′) + lg
(

1
1 − Em

)
(41)

lg(Qcorrect) = lg(Q′)− lg
(

1
1 − Ed

)
(42)

lg(Scorrect) = lg(S′) + lg
(

1
1 − Es

)
. (43)

The calculation of log-domain correction terms is challenging due to its reliance
on division and logarithmic operations. Utilizing Michell’s approximation can lead to
significant errors, making it less desirable for accurate computations. In this study, we
propose a method that involves partitioning the fractional parts into 2M equally spaced
regions using the M most significant bits (MSBs) of the fractions. For example, with three
MSBs (M = 3), the fraction x is divided into eight (23 = 8) equally spaced intervals:
0.000 → 0.125, 0.125 → 0.250, 0.250 → 0.375, 0.375 → 0.500, 0.500 → 0.625, 0.625 → 0.750,
0.750 → 0.875, and 0.875 → 1.000.

For each specific region xi ≤ x ≤ xi+1, we compute the average correction term and
store it in an LUT. Consequently, there are 22M correction terms for multiplication and
division, and 2M correction terms for square root operations. Tables 1–3 illustrate these
correction terms for multiplication, division, and square root when M = 3. As shown
in Table 1, the correction terms for multiplication form a symmetric matrix; therefore,
the number of correction terms that need to be stored in the LUT can be further reduced to
2M−1(2M + 1). An example calculation involves dividing 15 by 3, demonstrating that the
proposed correction term reduces the division error from 10% to 1.25%.

Dividend N1 = 15 = 00001111b ⇒ k1 = 3 = 11b, x1 = 7 = 111b

Divisor N2 = 3 = 00000011b ⇒ k2 = 1 = 1b, x2 = 1 = 1b

lg(N1) = 11.1110000b

lg(N2) = 01.1000000b

lg(N1)− lg(N2) = 10.0110000b

Q′ = 101.10000b = 5.5 ⇒ 10% error

Correction term lg
(

1
1 − Ed

)
= 0.10743 = 00.0001110b

lg(Qcorrect) = 110.0100010b

Qcorrect = 101.00010b = 5.0625 ⇒ 1.25% error.
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Table 1. Correction terms for multiplication errors using the three most significant bits (MSBs) to
partition the fractional parts.

x1\x2

0.000
↓

0.125

0.125
↓

0.250

0.250
↓

0.375

0.375
↓

0.500

0.500
↓

0.625

0.625
↓

0.750

0.750
↓

0.875

0.875
↓

1.000

0.000 → 0.125 0.00475 0.01304 0.01979 0.02540 0.03013 0.03417 0.03767 0.02669
0.125 → 0.250 0.01304 0.03592 0.05472 0.07042 0.08375 0.09520 0.09112 0.03307
0.250 → 0.375 0.01979 0.05472 0.08361 0.10792 0.12865 0.13252 0.08136 0.02522
0.375 → 0.500 0.02540 0.07042 0.10792 0.13963 0.15278 0.10957 0.06033 0.01879
0.500 → 0.625 0.03013 0.08375 0.12865 0.15278 0.11886 0.07757 0.04292 0.01342
0.625 → 0.750 0.03417 0.09520 0.13252 0.10957 0.07757 0.05087 0.02826 0.00886
0.750 → 0.875 0.03767 0.09112 0.08136 0.06033 0.04292 0.02826 0.01575 0.00495
0.875 → 1.000 0.02669 0.03307 0.02522 0.01879 0.01342 0.00886 0.00495 0.00156

Table 2. Correction terms for division errors using the three MSBs to partition the fractional parts.

x1\x2

0.000
↓

0.125

0.125
↓

0.250

0.250
↓

0.375

0.375
↓

0.500

0.500
↓

0.625

0.625
↓

0.750

0.750
↓

0.875

0.875
↓

1.000

0.000 → 0.125 0.01426 0.07090 0.12186 0.15092 0.15671 0.13896 0.09853 0.03727
0.125 → 0.250 0.00779 0.01413 0.05310 0.08792 0.10306 0.09790 0.07265 0.02834
0.250 → 0.375 0.01567 0.02431 0.01409 0.03891 0.06109 0.06552 0.05206 0.02118
0.375 → 0.500 0.02221 0.04624 0.03814 0.01410 0.02734 0.03934 0.03528 0.01530
0.500 → 0.625 0.02774 0.06492 0.07246 0.04990 0.01413 0.01772 0.02135 0.01038
0.625 → 0.750 0.03248 0.08104 0.10236 0.09521 0.06001 0.01417 0.00959 0.00622
0.750 → 0.875 0.03657 0.09508 0.12864 0.13545 0.11513 0.06880 0.01422 0.00264
0.875 → 1.000 0.04015 0.10743 0.15193 0.17144 0.16492 0.13273 0.07652 0.01428

Table 3. Correction terms for square root errors using the three MSBs to partition the fractional parts.

x
0.000
↓

0.125

0.125
↓

0.250

0.250
↓

0.375

0.375
↓

0.500

0.500
↓

0.625

0.625
↓

0.750

0.750
↓

0.875

0.875
↓

1.000

lg[1\(1 − Es)] 0.01198 0.02983 0.03961 0.04280 0.04050 0.03356 0.02265 0.00829

Figure 2 illustrates the distribution of errors for multiplication, division, and square
root operations using Mitchell’s [3], Ha and Lee’s [5], Kuo’s [6] methods, and our proposed
approach. The error distribution for Mitchell’s algorithm shows a left-skewed pattern in
multiplication, while division and square root errors exhibit a right-skewed distribution.
The corresponding mean and standard deviation pairs are (−0.038, 0.029), (0.041, 0.032),
and (−0.020, 0.009), respectively. Ha and Lee [5], as well as Kuo [6], have refined Mitchell’s
approximation, leading to reduced errors in logarithm computations. However, their
impact on log-domain arithmetic operations, depicted in Figure 2 and Table 4, shows
modest improvement.

With the introduction of correction terms in our proposed method, the mean and
standard deviation pairs improve to (−0.001, 0.015) for multiplication, (−0.004, 0.013) for
division, and (0.004, 0.004) for square root. These adjustments result in error reductions of
97.34% for multiplication, 90.24% for division, and 80% for square root. The error distri-
butions now closely resemble a Gaussian shape, indicating that errors are predominantly
centered around zero. This underscores a notable enhancement in accuracy compared to
the methods of Mitchell [3], Ha and Lee [5], and Kuo [6].
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Figure 2. Distribution of multiplication, division, and square root errors using methods by Mitchell [3],
Ha and Lee [5], Kuo [6], and the proposed method. (a) Multiplication error. (b) Division error.
(c) Square root error.

Table 4. Summary statistics of multiplication, division, and square root errors using methods by
Mitchell [3], Ha and Lee [5], Kuo [6], and the proposed method.

Operation
Mitchell [3] Ha and Lee [5] Kuo [6] Proposed Method

Mean Std. Mean Std. Mean Std. Mean. Std.

Multiplication −0.038 0.029 −0.036 0.030 −0.037 0.030 −0.001 0.015
Division 0.041 0.032 0.041 0.034 0.041 0.033 −0.004 0.013

Square root −0.020 0.009 −0.019 0.009 −0.019 0.009 0.004 0.004

Figure 3 illustrates the variation in error distributions for multiplication, division,
and square root operations as the number of MSBs M varies. When only one bit is utilized,
the error distributions remain skewed, resulting in minimal accuracy improvement. How-
ever, for M ≥ 3, the errors exhibit a Gaussian-like distribution with the mean approaching
zero, indicating a substantial enhancement in accuracy. Using larger values of M further
improves accuracy but comes at the expense of an exponential increase in the size of the
LUT, which is impractical for hardware implementation due to its exponential growth.
Therefore, we opt to use M = 3 for our unified hardware design.
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Figure 3. Distribution of multiplication, division, and square root errors using Mitchell’s method [3]
and the proposed method with M most significant bits, M ∈ {1, 3, 5, 7}. (a) Multiplication error.
(b) Division error. (c) Square root error.

3.3. Unified Hardware Design

The proposed unified hardware follows a similar block diagram structure as depicted
in Figure 1, thus retaining the inherent characteristic of algebraic symmetry. A key en-
hancement is the design of an MDS adder capable of executing addition, subtraction,
and shifting operations, thereby establishing a unified architecture for multiplication, di-
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vision, and square root computations. Figure 4 illustrates the detailed block diagram
of our design, which accepts two inputs of L bits and produces an output of 2L bits to
accommodate multiplication operations.

Input 1

0L – 1

sel

Input 2

0L – 1
1

10

+ Barrel shifter

k1 x1

L – 1
Priority encoder

Logarithm calculator

k2 x2

Logarithm

calculator

MDS adder

a/s

k x

sel
0FW – 1 0FW – 1

0FW

Decoder Priority encoder

Barrel shifter+

L – 1

Barrel shifter

01

Barrel shifter

10

Output

02L – 1

Comparator

t1

t2

t2t1

t1 ≤ t2

|shamt|
t1 ≤ t2 shamt = t1 – t2

W = 𝑙𝑔 𝐿 + 𝐿 − 1
F = L – 2

–
+

–

+

+

LUTMultiplier

LUTSquare rooter

LUTDivider

{sel, a/s}

00

10

01

{x1MSBs, x2MSBs}

Antilogarithm

calculator

Figure 4. Block diagram of the proposed unified hardware design for multiplication, division,
and square root.

The logarithm calculator comprises a priority encoder and a barrel shifter, implement-
ing Mitchell’s approximation method. The computed logarithm is stored in a W-bit register,
where the integer part occupies W − F bits and the fractional part consists of F + 1 bits.

W = ⌈lg(L)⌉+ L − 1 (44)

F = L − 2. (45)

To specify which operation is to be performed, we employ a 2-bit command, which is
further split into two 1-bit signals, denoted as sel and a/s. For binary operations, such as
multiplication and division, sel = 0 routes the second input into the logarithm calculator.
For a unary operation, like square root, sel = 1 selects a value of one, indicating the
disregard of the second input. Regarding a/s, the MDS adder performs addition when
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a/s = 0; otherwise, it performs subtraction. Table 5 summarizes the operations of the
proposed unified hardware design.

Table 5. Summary of operation modes of the proposed unified hardware design.

Command sel a/s Operation Description

00 0 0 Multiplication lg(N1) + lg(N2)
01 0 1 Division lg(N1)− lg(N2)
10 1 x Square root 0.5 · lg(N1) + lg(1)
11 x x No operation No description

In a naive implementation, adding or subtracting two logarithms would typically
require at least two adders: one for negating the second operand in the case of subtraction,
and another for adding two operands. However, in this study, we leverage the properties of
two’s complement number representation to enable a single adder to handle both addition
and subtraction. Figure 5 depicts the block diagram of the proposed MDS adder, where B
denotes the bit size of the input data.

0

1

0

1

0

1

+ 0

1>> 1

Input 1

Input 2

Concatenation

Drop LSB

sel
a/s

Output

B

B + 1

B

1

B + 1

B + 2
B + 1

B + 1

Figure 5. Block diagram of the proposed multiplication-division-square root (MDS) adder.

In two’s complement representation, the subtraction a − b is equivalent to a + b̄ + 1,
where b̄ is the bitwise inversion of b. In the proposed MDS adder, we pad the first input a
with a 1 bit in the least significant bit (LSB) position. Similarly, after inverting the second
input b, we pad b̄ with a 1 bit in the LSB position. Adding these two padded inputs
ensures that a carry-in of 1 is generated, resulting in a + b̄ + 1 as the output of the adder.
For example, considering subtracting two 4-bit numbers a = a3a2a1a0 and b = b3b2b1b0:

Padding a3a2a1a0 → a3a2a1a01

Inverting and padding b3b2b1b0 → b̄3b̄2b̄1b̄01

Performing addition c4c3c2c1c0 = a3a2a1a01 + b̄3b̄2b̄1b̄01

Result = c4c3c2c1.

Another example involves adding two 4-bit numbers a = a3a2a1a0 and b = b3b2b1b0:

Padding a3a2a1a0 → a3a2a1a01

Padding b3b2b1b0 → b3b2b1b00

Performing addition c4c3c2c1c0 = a3a2a1a01 + b3b2b1b00

Result = c4c3c2c1.

In the first example, adding 1 and 1 at the LSB position generates a carry-in of 1,
implying that c4c3c2c1 = a3a2a1a0 + b̄3b̄2b̄1b̄0 + 1. In the second example, adding 1 and 0
at the LSB position generates a carry-in of 0, implying that c4c3c2c1 = a3a2a1a0 + b3b2b1b0.
Therefore, the proposed MDS adder is capable of performing both addition and subtraction.
In the case of square root operations, the output of the adder will be shifted to the right by
one position.
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Next, the output of the MDS adder is combined with a correction term obtained from
one of three LUTs for multiplication, division, and square root operations, respectively.
The three MSBs of the fractional parts x1 and x2 serve as an address for accessing the LUTs.
Subsequently, the result is processed by the antilogarithm calculator. In the left branch,
a decoder and a barrel shifter determine the position of the most significant 1 bit. On the
right branch, a priority encoder and two barrel shifters adjust the fraction to ensure that the
bits are correctly positioned. The shift amount shamt specifies the position of the binary
point, separating the integer and fractional parts. In the antilogarithm calculator, the signals
t1 and t2 are used to represent intermediate results.

3.4. Implementation Results

We utilized Verilog HDL [22] (IEEE Standard 1364-2005) to implement the proposed
unified hardware design and Xilinx Vivado v2024.1 [23] to obtain the implementation
results. The target FPGA device is XCZU7EV-2FFVC1156 on a Zynq UltraScale+ MP-
SoC ZCU106 Evaluation Kit [24]. This device comprises a processing system (PS) and
programmable logic (PL) within the same unit. The PS features an Arm® Cortex®-A53
quad-core processor, a Cortex-R5F dual-core real-time processor, and a Mali-400 graphics
processing unit. The PL includes abundant configurable logic blocks (460,800 registers,
230,400 LUTs, 11Mb block RAM, 27 Mb UltraRAM, and 1728 DSP slices) and a video en-
coder/decoder unit, making it well-suited for high-performance computing applications.

In Section 3.2, we analyzed errors in logarithm-based multiplication, division, and square
root operations, discovering that these errors originated from the approximation of lg(1+ x)
in Equation (2). Methods proposed by Ha and Lee [5] and Kuo [6] improve the approx-
imation of lg(1 + x), thereby reducing the errors in multiplication, division, and square
root operations. Also in Section 3.2, we presented a method for reducing these errors and
demonstrated its superiority over the methods by Mitchell [3], Ha and Lee [5], and Kuo [6].
Notably, our proposed unified design is the first capable of performing multiplication,
division, and square root operations via a single hardware architecture, which is a definite
advantage but complicates direct comparisons. Therefore, we compare our proposed design
against the standard multiplier, divider, and square rooter widely utilized in the industry.

Table 6 summarizes the implementation results for 4-bit, 8-bit, 16-bit, 32-bit, and 64-bit
operands. The multiplier is designed based on the split mechanism detailed in [25], while
the divider and square rooter are designed following the pipeline parallelism described
in [26]. Although Xilinx provides DSP macros that can synthesize multipliers, dividers,
and squarers (not square rooters), these computing resources should be reserved for appli-
cations requiring intensive computations, such as neural network inference. Additionally,
utilizing slice logic (registers and LUTs) instead of DSP macros not only facilitates a straight-
forward comparison between the proposed design and standard ones but also results in a
more optimal implementation. We also included the Xilinx divider IP core in the compari-
son, with resource utilization information for this divider on the same Zynq UltraScale+
family obtained from [19].

First, it is noteworthy that all designs in Table 6 follow pipeline parallelism. Therefore,
the latency is the number of clock cycles required to fill the pipeline, after which new results
are produced in every clock cycle. While the multiplier’s latency is two clock cycles thanks
to the split mechanism, the latencies of the divider and square rooter depend on the bit size
used to represent the result. To conduct a fair comparison, we use the same output bit size
for all designs: specifically, 8, 16, 32, 64, and 128 bits to represent the output of 4-bit, 8-bit,
16-bit, 32-bit, and 64-bit operations, respectively. Consequently, the latencies of the divider
and square rooter can be explained as follows: one clock cycle for clocking input data and
8/16/32/64/128 clock cycles for 4-bit/8-bit/16-bit/32-bit/64-bit division and square root
operations, resulting in latencies of 9/17/33/65/129 clock cycles for these two designs,
as well as AMD Xilinx’s divider. In sharp contrast, our proposed design only requires
six clock cycles, regardless of whether the operation is multiplication, division, or square
root. This efficiency is attributed to the use of logarithms, which transforms multiplication,
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division, and square root operations into addition, subtraction, and shift operations, which
can be executed in a single clock cycle.

Table 6. Hardware implementation results of the standard multiplier, divider, square rooter, and the
proposed unified design. NA stands for not available.

Registers ↓ LUTs ↓ Latency ↓ Power Consumption ↓ Maximum Frequency ↑
(#) (#) (# Clock Cycles) (W) (MHz)

4-bit

Multiplier [25] 16 20 2 0.619 1272.265
Divider [26] 97 61 9 0.634 1053.741

AMD Xilinx’s divider [19] NA NA NA NA NA
Square rooter [26] 76 75 9 0.644 964.320
Proposed design 71 78 6 0.642 1005.025

8-bit

Multiplier [25] 32 80 2 0.659 603.136
Divider [26] 343 308 17 0.704 834.028

AMD Xilinx’s divider [19] 262 124 17 NA 636.000
Square rooter [26] 317 341 17 0.732 865.052
Proposed design 127 198 6 0.675 651.042

16-bit

Multiplier [25] 64 323 2 0.793 373.413
Divider [26] 1210 1131 33 0.999 776.398

AMD Xilinx’s divider [19] NA NA NA NA NA
Square rooter [26] 1273 1396 33 1.215 786.782
Proposed design 234 473 6 0.838 591.716

32-bit

Multiplier [25] 175 1303 2 0.915 250.000
Divider [26] 4444 4359 65 1.399 644.330

AMD Xilinx’s divider [19] 3334 1279 65 NA 604.000
Square rooter [26] 5152 5935 65 1.971 604.230
Proposed design 431 1121 6 0.993 506.842

64-bit

Multiplier [25] 440 5225 2 1.175 188.679
Divider [26] 17,038 17,099 129 2.998 533.903

AMD Xilinx’s divider [19] NA NA NA NA NA
Square rooter [26] 29,429 24,542 129 4.094 385.208
Proposed design 883 2394 6 1.415 500.000

Regarding slice logic utilization, it is evident from Table 6 that the multiplier occupies
the least amount of slice logic and consumes the least power because multiplication is a
relatively simple operation. However, as the operand bit size increases, the maximum
frequency decreases sharply, from 1272.265 MHz for 4-bit multiplication to 188.679 MHz
for 64-bit multiplication. Division and square root operations are more complex and
thus require a substantial amount of slice logic for implementation. These two designs
consume more power than the other designs but operate faster. Except for the simple
multiplier, our proposed design is superior to the divider and square rooter in terms of
slice logic utilization and power consumption. Although it is inferior to these two in terms
of maximum frequency, it is noteworthy that the maximum frequency attained by our
proposed design is adequate for most high-performance computing applications.

Overall, the implementation results demonstrate the efficacy and necessity of our
proposed unified design.

4. Conclusions

In this paper, we presented a unified and algebraically symmetrical hardware design
capable of performing multiplication, division, and square root operations by leveraging
the properties of binary logarithms. To address the errors caused by approximations
in logarithm calculations, we proposed the use of correction terms, which resulted in
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significant improvements in accuracy. We implemented the proposed unified design and
compared it with standard multipliers, dividers, and square rooters. The implementation
results demonstrated that our design is more efficient in terms of slice logic utilization and
power consumption while maintaining operation at an acceptably high frequency, making
it highly suitable for high-performance DSP applications.

While the proposed correction terms were calculated as average values over specific
intervals, it is possible to further reduce computation errors by narrowing the interval
or even using point-wise correction terms. However, this approach poses a significant
challenge due to the substantial number of LUTs required for storage. Another direction for
future work is to refine the approximation of lg(1+ x) using polynomial or piece-wise linear
regression. The regression model could provide a rough initial estimate of the logarithm,
which can then be refined using an iterative method like Newton–Raphson. In future work,
we will explore all these potential directions and seek a most computationally efficient way
to further reduce computation errors.

Author Contributions: Conceptualization, B.K.; software, D.N.; validation, D.N.; data curation,
S.H.; writing—original draft preparation, D.N.; writing—review and editing, D.N., S.H. and B.K.;
supervision, B.K. All authors have read and agreed to the published version of the manuscript.

Funding: This was supported by Korea National University of Transportation Industry-Academy
Cooperation Foundation in 2024.

Data Availability Statement: Dataset available on request from the authors.

Acknowledgments: The EDA tool was supported by the IC Design Education Center (IDEC), Korea.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Arnold, M.G.; Collange, C. A Real/Complex Logarithmic Number System ALU. IEEE Trans. Comput. 2011, 60, 202–213.

[CrossRef]
2. Chaudhary, M.; Lee, P. An Improved Two-Step Binary Logarithmic Converter for FPGAs. IEEE Trans. Circuits Syst. II Express

Briefs 2015, 62, 476–480. [CrossRef]
3. Mitchell, J.N. Computer Multiplication and Division Using Binary Logarithms. IRE Trans. Electron. Comput. 1962, EC-11, 512–517.

[CrossRef]
4. Kuo, C.; Juang, T. Design of fast logarithmic converters with high accuracy for digital camera application. Microsyst. Technol.

2018, 24, 9–17. [CrossRef]
5. Ha, M.; Lee, S. Accurate Hardware-Efficient Logarithm Circuit. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 967–971.

[CrossRef]
6. Kuo, C. Design and realization of high performance logarithmic converters using non-uniform multi-regions constant adder

correction schemes. Microsyst. Technol. 2018, 24, 4237–4245. [CrossRef]
7. Jana, B.; Roy, A.S.; Saha, G.; Banerjee, S. A Low-Error, Memory-Based Fast Binary Logarithmic Converter. IEEE Trans. Circuits

Syst. II Express Briefs 2020, 67, 2129–2133. [CrossRef]
8. Makimoto, R.; Imagawa, T.; Ochi, H. Approximate Logarithmic Multipliers Using Half Compensation with Two Line Segments.

In Proceedings of the 2023 IEEE 36th International System-on-Chip Conference (SOCC), Santa Clara, CA, USA, 5–8 September
2023; pp. 1–6. [CrossRef]

9. Ahmed, S.; Srinivas, M. An Improved Logarithmic Multiplier for Media Processing. J. Signal Process. Syst. 2019, 91, 561–574.
[CrossRef]

10. Wu, X.; Wei, Z.; Ko, S.B.; Zhang, H. Design of Energy Efficient Logarithmic Approximate Multiplier. In Proceedings of the 2023
5th International Conference on Circuits and Systems (ICCS), Huzhou, China, 27–30 October 2023; pp. 129–134. [CrossRef]

11. Joginipelly, A.; Charalampidis, D. An efficient circuit for error reduction in logarithmic multiplication for filtering applications.
Int. J. Circuit Theory Appl. 2020, 48, 809–815. [CrossRef]

12. Subhasri, C.; Jammu, B.; Harsha, L.; Bodasingi, N.; Samoju, V. Hardware-efficient approximate logarithmic division with
improved accuracy. Int. J. Circuit Theory Appl. 2020, 49, 128–141. [CrossRef]

13. Niu, Z.; Zhang, T.; Jiang, H.; Cockburn, B.F.; Liu, L.; Han, J. Hardware-Efficient Logarithmic Floating-Point Multipliers for
Error-Tolerant Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2024, 71, 209–222. [CrossRef]

14. Kim, S.; Norris, C.J.; Oelund, J.I.; Rutenbar, R.A. Area-Efficient Iterative Logarithmic Approximate Multipliers for IEEE 754 and
Posit Numbers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2024, 32, 455–467. [CrossRef]

http://doi.org/10.1109/TC.2010.154
http://dx.doi.org/10.1109/TCSII.2014.2386252
http://dx.doi.org/10.1109/TEC.1962.5219391
http://dx.doi.org/10.1007/s00542-016-3105-y
http://dx.doi.org/10.1109/TCSII.2016.2608967
http://dx.doi.org/10.1007/s00542-018-3745-1
http://dx.doi.org/10.1109/TCSII.2019.2945336
http://dx.doi.org/10.1109/SOCC58585.2023.10256796
http://dx.doi.org/10.1007/s11265-018-1350-2
http://dx.doi.org/10.1109/ICCS59502.2023.10367339
http://dx.doi.org/10.1002/cta.2775
http://dx.doi.org/10.1002/cta.2900
http://dx.doi.org/10.1109/TCSI.2023.3326329
http://dx.doi.org/10.1109/TVLSI.2024.3354726


Symmetry 2024, 16, 1138 15 of 15

15. Norris, C.J.; Kim, S. A Use Case of Iterative Logarithmic Floating-Point Multipliers: Accelerating Histogram Stretching on
Programmable SoC. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA,
USA, 21–25 May 2023; pp. 1–5. [CrossRef]

16. Vakili, S.; Vaziri, M.; Zarei, A.; Langlois, J.P. DyRecMul: Fast and Low-Cost Approximate Multiplier for FPGAs using Dynamic
Reconfiguration. ACM Trans. Reconfigurable Technol. Syst. 2024. [CrossRef]

17. Towhidy, A.; Omidi, R.; Mohammadi, K. On the Design of Iterative Approximate Floating-Point Multipliers. IEEE Trans. Comput.
2023, 72, 1623–1635. [CrossRef]

18. Intel. Integer Arithmetic Intel FPGA IP Cores User Guide. Available online: https://www.intel.com/content/www/us/en/
docs/programmable/683490/24-1/integer-arithmetic-cores.html (accessed on 26 August 2024).

19. Xilinx. Divider Generator v5.1 Product Guide (PG151). Available online: https://docs.amd.com/v/u/en-US/pg151-div-gen
(accessed on 26 August 2024).

20. Xilinx. Vivado Design Suite Reference Guide: Model-Based DSP Design Using System Generator (UG958). Available online:
https://docs.amd.com/r/en-US/ug958-vivado-sysgen-ref (accessed on 26 August 2024).

21. Mclaren, D. Improved Mitchell-based logarithmic multiplier for low-power DSP applications. In Proceedings of the 2003 IEEE
International Systems-on-Chip SOC Conference, Portland, OR, USA, 17–20 September 2003; pp. 53–56. [CrossRef]

22. IEEE Std 1364-2005 (Revision of IEEE Std 1374-2001); IEEE Standard for Verilog Hardware Description Language; IEEE: Piscataway,
NJ, USA, 2006; [CrossRef]

23. Xilinx. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973). Available online: https:
//docs.amd.com/r/en-US/ug973-vivado-release-notes-install-license/Release-Notes (accessed on 21 April 2024).

24. Xilinx. ZCU106 Evaluation Board: User Guide (UG1244). Available online: https://docs.xilinx.com/v/u/en-US/ug1244-zcu106
-eval-bd (accessed on 25 July 2023).

25. Ngo, D.; Kang, B. Taylor-Series-Based Reconfigurability of Gamma Correction in Hardware Designs. Electronics 2021, 10, 1959.
[CrossRef]

26. Lee, S.; Ngo, D.; Kang, B. Design of an FPGA-Based High-Quality Real-Time Autonomous Dehazing System. Remote Sens. 2022,
14, 1852. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ISCAS46773.2023.10182065
http://dx.doi.org/10.1145/3663480
http://dx.doi.org/10.1109/TC.2022.3216465
https://www.intel.com/content/www/us/en/docs/programmable/683490/24-1/integer-arithmetic-cores.html
https://www.intel.com/content/www/us/en/docs/programmable/683490/24-1/integer-arithmetic-cores.html
https://docs.amd.com/v/u/en-US/pg151-div-gen
https://docs.amd.com/r/en-US/ug958-vivado-sysgen-ref
http://dx.doi.org/10.1109/SOC.2003.1241461
http://dx.doi.org/10.1109/IEEESTD.2006.99495
https://docs.amd.com/r/en-US/ug973-vivado-release-notes-install-license/Release-Notes
https://docs.amd.com/r/en-US/ug973-vivado-release-notes-install-license/Release-Notes
https://docs.xilinx.com/v/u/en-US/ug1244-zcu106-eval-bd
https://docs.xilinx.com/v/u/en-US/ug1244-zcu106-eval-bd
http://dx.doi.org/10.3390/electronics10161959
http://dx.doi.org/10.3390/rs14081852

	Introduction
	Related Work
	Proposed Design
	Mitchell's Algorithm-Based Logarithm Multiplication, Division, and Square Root
	Error Analysis
	Unified Hardware Design
	Implementation Results

	Conclusions
	References

