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Current image-based analysis methods for monitoring cell confluency and status depend on individual interpretations, 
which can lead to wide variations in the quality of cell therapeutics. To overcome these limitations, images of mesen-
chymal stem cells cultured adherently in various types of culture vessels were captured and analyzed using a deep 
neural network. Among the various deep learning methods, a classification and detection algorithm was selected to 
verify cell confluency and status. We confirmed that the image classification algorithm demonstrates significant accu-
racy for both single- and multistack images. Abnormal cells could be detected exclusively in single-stack images, as 
multistack culture was performed only when abnormal cells were absent in the single-stack culture. This study is the 
first to analyze cell images based on a deep learning method that directly impacts yield and quality, which are important 
product parameters in stem cell therapeutics.
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Introduction 

  Since their discovery by Friedenstein et al. (1) in the 
1960s and the 1970s, mesenchymal stem cells (MSCs) have 
demonstrated therapeutic potential against various dis-
eases (1, 2). Beyond their regenerative potential, the main 
therapeutic mechanism of MSCs is mediated through 
paracrine actions, such as immunomodulatory, trophic, and 
protective effects in various diseases (3, 4). The criteria 
for defining cells as MSCs are characterized by the Inter-
national Society for Cell & Gene Therapy (5). MSCs have 
been found in a variety of adult and neonatal tissue sour-
ces (6), but an essential requirement is that they need to 
be cultured under plastic-adherent conditions (7). 
  The yield of adherent cells is assessed by monitoring 
their confluence relative to the surface of the culture vessel. 
Cell confluency is crucial in the manufacture of cell therapy 
products because it determines the subculture and harvest 
stages. Microscopy is commonly used to measure cell con-
fluency, as it allows for nondestructive, label-free analysis, 
which is critical for maintaining product quality. In addi-
tion, visual measurements enable the detection of cells with 
an abnormal status, as indicated by an enlarged and flat-
tened shape.
  Nevertheless, the reliance on manual assessment of mi-
croscope images to evaluate MSCs growth and determine 
the optimal harvest time introduces subjectivity and sig-
nificant time investment. In the field of therapeutic pro-
duction, these variations have a significant impact (8). 
Different interpretations of cell images by individual tech-
nicians can lead to large variations in key process steps, 
resulting in quality deviations such as decreased therape-
utic efficacy and production yield. Therefore, developing 
an objective and automated protocol for monitoring MSCs 
cultures is crucial, as this area remains underexplored.
  Efforts to automate the examination of cell proliferation 
have encountered specific challenges, especially when deal-
ing with MSCs at the production scale. To maximize their 
productivity, MSCs are cultured in multilayer flasks (9). 
The multilevel culture vessels enable savings in cost, space, 
time, and labor, but also present limitations in the reso-
lution of the images owing to the different refractions of 
light under overlapped layers. Furthermore, distinguish-
ing cells from the background becomes increasingly subtle 
as cell confluence increases. This inherent complexity un-
derscores the difficulty of accurately assessing cell growth 
based on microscope images and highlights the need for 
monitoring algorithms that meet rigorous requirements in 
terms of accuracy and generalizability.
  Despite the scarcity of studies on automated monitoring 

of MSCs cultures, related research on cell segmentation 
(10) and cell confluence estimation (11) offers valuable in-
sights. These studies have employed various computer vi-
sion techniques with different levels of algorithmic com-
plexity. Heuristic methods, including image thresholding, 
edge detection, and clustering, lack generalizability be-
cause they rely on predefined rules and assumptions. In 
contrast, deep convolutional neural networks (CNNs) offer 
a data-driven approach that captures hidden regularities 
within data. CNNs have achieved remarkable performance 
in medical applications such as skin cancer classification 
(12). Unlike heuristic methods, CNNs learn intricate pat-
terns and features directly from data, making them partic-
ularly promising for MSCs culture monitoring.
  In this study, we present a novel approach based on 
CNNs for classifying cell confluence and detecting abnor-
mal cells in microscope images. Our objective was to accu-
rately categorize the entire image into different confluence 
levels while identifying and localizing the presence of ab-
normal cells. 

Materials and Methods

Isolation and cultivation of human Wharton’s 
jelly-derived MSCs
  This study was approved by the Institutional Review 
Board of the Samsung Medical Center (IRB# SMC-2016- 
07-102-037, renewal date August 19th, 2022). Umbilical 
cords were collected with informed consent from pregnant 
mothers. Wharton’s jelly-derived mesenchymal stem cells 
(WJ-MSCs) were isolated from umbilical cord tissues, as 
previously described (13). WJ-MSCs were cultured in sin-
gle- and multilayer flasks according to the standard oper-
ating procedures of the Good Manufacturing Practice fa-
cility at ENCell Co., Ltd. Images of the cells were taken 
daily at identical locations at the four corners and center 
of the culture vessels. Cell confluence was categorized into 
four levels: class 1, seeding point (0%∼40%); class 2, me-
dia change decision point (40%∼60%); class 3, subculture 
decision point (60%∼80%); and class 4, overgrown deci-
sion point (80%∼100%; Fig. 1).

Dataset exploration
  Our dataset comprised 720 single-stack and 413 multi-
stack images, each of which was associated with one of 
four different confluence levels: 1, 2, 3, and 4. Further-
more, a subset of the single-stack images (165 of 720) con-
tained bounding box annotations indicating the presence 
of abnormal cells. 
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Fig. 1. Microscope images of Wharton’s jelly-derived mesenchymal stem cells in single-stack and multistack configurations at various sub-
classes: (A-D) show classification images from single layer flasks, (E-H) depict original classification images from multi-layer flasks, and 
(I-L) display histogram-equalized classification images from multi-layer flasks. The images of the flasks were created using BioRender.com

Augmentation methods
  Given the limited number of images in the dataset, we 
applied seven augmentation methods to mitigate overfi-
tting: random rotation, horizontal flip, vertical flip, color jit-
ter, Gaussian blur, sharpness enhancement, and contrast 
enhancement. The first three methods improved the model’s 
robustness against geometric rotations, while the last four 
address variations in the microscopic imaging conditions 
(such as lighting and contrast).
  The rotation operator adjusted each pixel location in an 
image by rotating it through a specified angle about the 
image center. Horizontal and vertical flips are self-expla-
natory. Color jitter randomly adjusted the image brightness 
and hue, increasing the model’s robustness by introducing 
variations in the color properties. Gaussian blurring in-
volved convolving an image with a low-pass filter whose 
coefficients were drawn from a normal distribution, there-
by smoothing the image, and reducing noise.
  Sharpness enhancement was implemented by adding a 
scaled edge map to a smoothed version of the input image. 
An edge map was obtained by subtracting the smoothed 
image from the original image. This technique enhanced 
the clarity and definition of image edges, promoting clear-
er object boundaries. Contrast enhancement was achieved 
through min-max image intensity stretching, thereby ex-
panding the dynamic range of the pixel intensities, and 

increasing the contrast. In this study, we applied sharp-
ness and contrast enhancements with equal probability.

Deep learning model
  Fig. 2 presents an overview of the proposed model, which 
comprises the following modules: feature extraction, classi-
fication, and abnormal cell detection. We assessed the per-
formance of six state-of-the-art CNN architectures—AlexNet, 
InceptionV3, ResNet50 (14), ShuffleNetV2 (15), MobileNetV3 
(16), and Vision Transformer (17)—to identify the optimal 
feature extractor. We subsequently adapted RetinaNet (18), 
a widely used object detection framework, to perform image 
classification and abnormal cell detection. 
  The source code and dataset used in this study are publicly 
available at https://github.com/MIHLabCHA/Mesenchymal- 
Stem-Cells-Classification-and-Detection
  Feature extraction: In classification tasks, obtaining a 
highly abstract task-specific feature map is crucial. Although 
heuristic methods are effective at capturing primitive fea-
tures relevant to a specific problem, their limited general-
izability stems from their lack of feature abstraction capa-
bility. By contrast, CNNs offer a powerful framework for 
extracting and abstracting features from images. CNNs 
consist of sequentially arranged convolutional layers, where 
each layer typically performs convolution, nonlinear map-
ping, and pooling. Convolution uses learnable filters to de-
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Fig. 2. Overview of the proposed deep learning model for mesenchymal stem cells image classification and abnormal cell detection. The 
red-dotted boxes correspond to the explanation in the deep learning model subsection.

tect various visual patterns in an image, producing feature 
maps that highlight the presence of the detected patterns. 
Nonlinear mapping applies an element-wise function to 
feature maps, enabling CNNs to discover complex rela-
tionships. Pooling summarizes local information in fea-
ture maps, reducing spatial dimensions while preserving 
essential patterns, which helps CNNs remain invariant to 
small spatial translations.
  By stacking multiple convolutional layers, CNNs pro-
gressively learn abstract and higher-level features. The 
lower layers capture primitive features, such as edges and 
textures, while the higher layers capture more complex pa-
tterns and semantic information. In this study, we used 
adaptive average pooling at the final convolutional layer 
to aggregate and flatten the feature maps into a feature 
vector of length 2048, thereby facilitating the subsequent 
classification process.
  Classification: Given the feature vector, we employed 
two fully connected layers (FCLs), followed by a softmax 
layer for classification. Each FCL, which is characterized 
by a weight matrix and a bias vector, mapped the input 
feature vector to an output of the desired length. In this 
study, the two FCLs reduced the feature vector length from 
2,048 to 1,024, and then to four, corresponding to the num-
ber of classes. The softmax layer normalized the output vec-
tor into a probability distribution, with each element repre-
senting the probability of the corresponding class.
  To train the model, we used the cross-entropy loss func-

tion, which measured the dissimilarity between the pre-
dicted and true probability distributions and served as an 
effective objective for model training.
  Abnormal cell detection: To detect abnormal cells, we 
constructed a feature pyramid to handle different object 
scales, thereby enhancing the scale invariance of our model. 
The feature pyramid was built top-down, starting with the 
final feature map from the feature extractor. For each con-
volutional layer, the corresponding final feature map was 
upsampled to match the size of the preceding layer’s fea-
ture map. The two maps were combined to form a pyr-
amidal feature map.
  These pyramid feature maps were then input into in-
dependent regression networks for abnormal cell detection. 
Each map could be viewed as a set of grids, where each 
grid covered a specific region in the input image and con-
tained predefined anchor boxes of various sizes and aspect 
ratios. The network identified the presence and shape of 
abnormal cells within each anchor box.
  To ensure accurate bounding box predictions and mini-
mize the impact of outliers, we employed a smooth L1 
function for model training. This function enabled our 
model to learn precise bounding-box predictions while be-
ing less sensitive to extreme values.
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Table 1. Mean ROCAUC, accuracy, and PRAUC scores for mesenchymal stem cells image classification

Backbone CNN
Single-stack Multistack

ROCAUC Accuracy PRAUC ROCAUC Accuracy PRAUC

AlexNet 0.949±0.008 0.863±0.035 0.879±0.026 0.751±0.051 0.525±0.055 0.494±0.080
InceptionV3 0.958±0.017a 0.928±0.029a 0.923±0.030a 0.937±0.033 0.850±0.074 0.839±0.082
ResNet50 0.941±0.009 0.863±0.038 0.857±0.032 0.958±0.015a 0.875±0.045a 0.897±0.034a

ShuffleNetV2 0.915±0.023 0.766±0.041 0.816±0.052 0.892±0.033 0.765±0.068 0.751±0.067
MobileNetV3 0.940±0.014 0.816±0.108 0.861±0.041 0.894±0.034 0.750±0.098 0.727±0.084
Vision Transformer 0.948±0.013 0.809±0.065 0.867±0.036 0.616±0.023 0.380±0.053 0.341±0.045

Values are presented as mean±SD.
ROCAUC: receiver operating characteristic curve, PRAUC: precision-recall curve, CNN: convolutional neural network.
aBest results.

Table 2. Mean hit rate and false discovery rate scores for abnormal 
cell detection

Hit rate False discovery rate

Fold 1 0.879 0.000
Fold 2 0.968 0.000
Fold 3 1.000 0.000
Fold 4 0.923 0.000
Fold 5 1.000 0.000
Average 0.954±0.047 0.000±0.000

Values are presented as mean±SD.

Results

Model evaluation using cross-validation
  We performed five-fold cross-validation to assess the ef-
ficacy of our proposed deep learning solution. More speci-
fically, we split the dataset into five equally sized groups, 
reserving one group for validation while using the remaining 
four for model training. This process was repeated five 
times, with each of the five groups serving as the validation 
dataset exactly once. During model training, we utilized 
the AMSGrad variant of the Adam optimization algo-
rithm, incorporating L2 regularization and a learning rate 
uniformly sampled from the range [10−2, 10−8]. We set 
the total number of epochs to 1,000 and allowed the train-
ing to terminate if there was no improvement after 100 
epochs.
  We trained and validated our model on a deep learning 
server equipped with two 8-core Intel(R) Xeon(R) Gold 
5315Y CPUs (each supporting hyper-threading with two 
threads), 256 GB RAM, and four NVIDIA RTX A2000 12 
GB GPUs.

Performance metrics and image classification
  To evaluate WJ-MSCs image classification, we used the area 
under the receiver operating characteristic curve (ROCAUC), 
accuracy, and the area under the precision-recall curve (PRAUC) 
as assessment metrics. Because our task involved multiclass 
classification, we calculated the ROCAUC and PRAUC using 
the micro-average one-versus-all approach. We investigated 
six different backbone CNNs, namely AlexNet, InceptionV3, 
ResNet50, ShuffleNetV2, MobileNetV3, and Vision Transfor-
mer, to determine the optimal feature extractor. The ex-
perimental results are summarized in Table 1 and the best 
results are denoted by the superscript ‘a’.
  Table 1 shows that all six CNNs are highly appropriate 

for single-stack WJ-MSCs image classification. InceptionV3 
achieved the highest mean ROCAUC score of 0.958± 
0.017, the highest mean PRAUC score of 0.923±0.030, and 
the highest accuracy, with a mean score of 0.928±0.029. 
In classifying images based on cell confluence levels, im-
ages obtained from single-flask cultivation were visually 
distinguishable, albeit with some confusion between cla-
sses 2 and 3 (Fig. 1).

Challenges in multistack image classification
  Nevertheless, this task became more challenging when 
dealing with images from multi-flask cultivation, which 
exhibited greater complexity. Consequently, certain CNNs, 
including AlexNet, ShuffleNetV2, MobileNetV3, and Vision 
Transformer, struggled to extract informative high-level 
features, as evidenced by their relatively low scores. In 
contrast, InceptionV3 and ResNet50, with architectural 
designs that facilitate the stacking of multiple convolu-
tional layers, yielded promising results. Notably, ResNet50 
emerged as the most suitable architecture for feature ex-
traction, yielding the highest scores for ROCAUC, accu-
racy, and PRAUC. The inclusion of auxiliary classifiers 
in InceptionV3 helps mitigate the problem of gradient van-
ishing in very deep neural networks, whereas ResNet50 
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addresses this issue using skip connections. These architec-
tural choices contributed significantly to the improved per-
formance of InceptionV3 and ResNet50 in our experiments.

Abnormal cell detection efficacy
  Based on the experimental results of the WJ-MSCs im-
age classification, it is evident that both InceptionV3 and 
ResNet50 excel as feature extractors regardless of whether 
the input images are single-stack or multistack images. 
This observation, coupled with the favorable characteristics 
of RetinaNet in terms of implementation convenience, led 
us to select ResNet50 as the backbone feature extractor for 
abnormal cell detection.
  To evaluate the performance of abnormal cell detection, 
we utilized two metrics: hit and false discovery rates. We 
also performed five-fold cross-validation and the results 
are presented in Table 2. Notably, our experiments for de-
tecting abnormal cells were conducted exclusively with sin-
gle-stack images due to the absence of bounding box anno-
tations for multistack images, as indicated in Table 1. The 
analysis demonstrates the outstanding performance of the 
proposed model, particularly in achieving zero false alarms 
across all five folds. Notably, the third and fifth folds dis-
played ideal performance, while the remaining folds expe-
rienced a few instances of misclassification, where the model 
incorrectly indicated the absence of abnormal cells. Ove-
rall, the experimental results confirm the suitability of our 
model for accurate abnormal cell detection.
  Detection analysis of the multi-layer flask image set was 
not possible as these images were taken at later passages 
after abnormal conditions had already been verified.

Discussion

  MSCs are promising therapeutic candidates for various 
diseases, as demonstrated by numerous clinical trials and 
approvals worldwide (8). Their intrinsic features allow them 
to naturally migrate, localize, and respond to disease envi-
ronments, providing significant benefits with minimal im-
mune reactions, which enables the use of allogenic prod-
ucts (6, 7). However, challenges remain, as MSCs from vari-
ous sources present diversity, complicating the manufactur-
ing process. From the perspective of the manufacturing 
process alone, adherent culture remains the key process 
for MSCs production, and methods such as total cell 
count, cell image-based analysis, and metabolic analysis 
are being employed to enable a more efficient scale-up 
(19). Analyzing the total number of cells requires detach-
ment, which risks cell destruction. Analyzing the metabol-
ic changes can confirm overall cell growth patterns but fails 

to independently detect abnormal cell status. Assessing MSC 
confluency is the simplest method, but is prone to sub-
jective interpretation.
  Despite its recognized significance, cell confluence has 
received limited attention in the literature. Related studies 
focused on the classification and segmentation of cell phe-
notypes. Traditional approaches rely on heuristic methods 
for image preprocessing, followed by handcrafted feature 
extraction and classification using models, such as SVM 
and kNN (10). However, these methods often suffer from 
limited generalizability because of manual parameter 
tuning. Recent efforts by Bai et al. (11) introduced deep- 
learning-based approaches to address these challenges. 
However, these methods often use standard architectures 
that may lack the flexibility to capture complex relation-
ships in cellular imagery.
  Our study explored various deep learning models, such as 
AlexNet, InceptionV3, ResNet50, ShuffleNetV2, MobileNetV3, 
and Vision Transformer. We leveraged RetinaNet for rap-
id and accurate detection of abnormal cells, which is a 
critical aspect of the manufacturing process. We validated 
our model across different image types, including single- 
stack and multistack images, demonstrating its robustness 
and potential in WJ-MSC applications.
  While InceptionV3 demonstrated outstanding perform-
ance in classifying cell confluence in single-stack images, 
the other CNN architectures also yielded acceptable scores. 
This can be attributed to the distinct features of single- 
stack images, which allow CNNs to capture high-level in-
dicators of cell confluence.
  The performance of CNN architectures varied substan-
tially when analyzing multistack images. While the best 
ROCAUC using ResNet50 (0.958±0.015) was comparable 
to that for single-stack images, accuracy (0.875±0.045) and 
PRAUC (0.897±0.034) were notably lower. This dimin-
ished performance is likely due to cell clumping, repre-
sented as black spots in Fig. 1, which distracts the CNN 
models from discerning meaningful patterns within the 
training data. Further studies should include compre-
hensive experiments to clarify the impact of cell clumping 
on model performance.
  Furthermore, we present the experimental findings on 
the detection of abnormal cells using single-stack images. 
This task could not be performed in the multistack scenar-
io because of the absence of bounding box annotations. 
The detection results were impressive, with a mean false 
discovery rate of zero and a mean hit rate of 0.954±0.047. 
This performance is attributed to anchor boxes of varying 
sizes and aspect ratios, which provided prior information 
about expected object dimensions and geometries. The 
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network learned to classify abnormal cells and predicted 
their bounding boxes relative to these anchors, thereby im-
proving localization accuracy.
  However, two major limitations of this study must be 
acknowledged. Firstly, the absence of an external test set 
collected from different institutes under diverse culti-
vation settings hindered the assessment of the generaliza-
bility of the proposed model. Secondly, our dataset in-
cluded only a single bounding box annotation per image, 
whereas abnormal cells could occur at multiple locations 
within an image. Future efforts should focus on acquiring 
additional data to create an external test set and address 
cases where abnormal cells are dispersed across the image.
  Furthermore, it is imperative to investigate whether flat-
tened or enlarged abnormal cells in multiflask cultivation 
impact classification. One approach involves training and 
validating two separate models on variants of the same da-
taset: one with cell clumps present and the other with cell 
clumps masked out. A comparative analysis of these mod-
els is likely to yield valuable insights into the impact of 
cell clumps on the model’s ability to discern cell con-
fluence levels, which is a major goal of our future research. 
  This study aimed to reduce subjectivity and increase 
practicality by using a simple index. We demonstrated 
that the noninvasive classification of multilayer flask im-
ages can be effectively applied to the GMP manufacturing 
process, potentially enhancing the efficiency of WJ-MSCs 
therapeutics for various diseases.
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