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Abstract: Single-image dehazing is an ill-posed problem that has attracted a myriad of research efforts.
However, virtually all methods proposed thus far assume that input images are already affected by
haze. Little effort has been spent on autonomous single-image dehazing. Even though deep learning
dehazing models, with their widely claimed attribute of generalizability, do not exhibit satisfactory
performance on images with various haze conditions. In this paper, we present a novel approach
for autonomous single-image dehazing. Our approach consists of four major steps: sharpness
enhancement, adaptive dehazing, image blending, and adaptive tone remapping. A global haze
density weight drives the adaptive dehazing and tone remapping to handle images with various
haze conditions, including those that are haze-free or affected by mild, moderate, and dense haze.
Meanwhile, the proposed approach adopts patch-based haze density weights to guide the image
blending, resulting in enhanced local texture. Comparative performance analysis with state-of-the-art
methods demonstrates the efficacy of our proposed approach.

Keywords: single-image dehazing; autonomous dehazing; local texture enhancement; haze density

1. Introduction

Digital cameras operating in outdoor environments are susceptible to performance
degradation due to the presence of microscopic particles suspended in the atmosphere.
As a result, images or videos captured under such conditions often suffer from reduced
visibility and diminished contrast, which pose challenges for downstream applications
such as pedestrian detection [1,2], automatic emergency braking [3,4], and particularly
aerial surveillance [5,6].

Figure 1 illustrates the impact of haze and the application of dehazing algorithms in
an aerial surveillance context. The first row displays a haze-free image (Figure 1a) from
the Aerial Image Dataset [7] alongside its corresponding synthetic hazy image (Figure 1c).
Figure 1b,d present the dehazing results obtained using a deep-learning-based algorithm
(MB-TaylorFormer [8]). The second row shows the corresponding object detection results
for the four images in the first row, using the YOLOv9 object detection framework [9].
Notably, a haziness degree evaluator [10] was employed to distinguish Figure 1a as haze-
free and Figure 1c as hazy.

As depicted in Figure 1e, YOLOv9 detected seven objects from the haze-free image, in-
cluding five airplanes and two incorrect detections (knife and bird). The result in Figure 1b
demonstrates that even an advanced deep learning method like MB-TaylorFormer strug-
gles to process haze-free images. This limitation arises because MB-TaylorFormer, like
most dehazing algorithms, was designed under the assumption that the input images are
already affected by haze. Consequently, Figure 1f shows a significant drop in YOLOv9’s
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performance, highlighting the adverse effect of applying dehazing algorithms to haze-free
images and underscoring the need for more autonomous and adaptive algorithms.

In the case of the hazy image, the presence of haze significantly impairs YOLOv9’s
performance, with only two airplanes detected, as shown in Figure 1g. However, MB-
TaylorFormer enhances YOLOv9’s performance in this scenario, as Figure 1h demonstrates,
where four airplanes are detected (2× improvement). This emphasizes the crucial role of
dehazing algorithms in enhancing the effectiveness of aerial surveillance systems.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Illustration of the effects of haze and dehazing algorithms on an aerial surveillance
application. First row: (a) a clean image, (b) the dehazing result of that clean image, (c) a hazy
image, and (d) the dehazing result of that hazy image. Second row: (e–h) the corresponding object
detection results for each of the four images in the first row. The dehazing algorithm used is MB-
TaylorFormer [8], and the object detection algorithm used is YOLOv9 [9]. Notes: yellow labels
represent airplanes, blue labels represent birds, and orange labels represent knifes.

Recently, Lee et al. [11] introduced an autonomous dehazing method that blends
the input image with its dehazed counterpart, where the blending weights are deter-
mined based on the haziness degree of the input image. This method can be expressed as
B = α f (I) + (1 − α)I, where B represents the blending output, I is the input image, f (·)
denotes the applied dehazing method, and α is the blending weight. The autonomous
dehazing process is defined as follows:

• If I is haze-free, α = 0 to ensure that no dehazing is applied.
• If I is mildly or moderately hazy, 0 < α < 1 to apply dehazing proportionally to the

haziness degree.
• If I is densely hazy, α = 1 to perform full-scale dehazing.

Figure 2a presents a simplified block diagram of this algorithm. It is important to note
that Lee et al. [11] employed a global blending weight, which does not account for the
local distribution of haze. To address this limitation, we propose the use of patch-based
blending weights to enhance the local texture of the dehazed output. Additionally, we
introduce an interpolation scheme to mitigate boundary artifacts that may arise from the
use of patch-based weights. Figure 2b also illustrates the simplified block diagram of the
proposed algorithm, with major contributions highlighted by pink boxes.
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The remainder of this paper is organized as follows: Section 2 reviews existing single-
image dehazing methods, Section 3 details the proposed algorithm, Section 4 presents a
comparative analysis with benchmarking methods, and Section 5 concludes the paper.
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Figure 2. Simplified block diagrams of autonomous dehazing algorithms. (a) Lee et al. [11]. (b) Proposed
algorithm. Major contributions are highlighted by pink boxes.

2. Literature Review

The formation of hazy images is commonly described using the simplified Koschmieder
model [12], expressed as follows:

I(x, y) = J(x, y)exp[−βscd(x, y)] + A{1 − exp[−βscd(x, y)]}, (1)

where I represents the captured image, J the clean image (or scene radiance), A the global
atmospheric light, βsc the atmospheric scattering coefficient, d the scene depth, and (x, y) the
pixel coordinates. For simplicity, the pixel coordinates are omitted in subsequent expressions.

In this model, the term Jexp(−βscd) accounts for the multiplicative attenuation of
light reflected from object surfaces as it travels to the camera aperture. Meanwhile, the
term A[1 − exp(−βscd)] reflects the portion of atmospheric light scattered directly into the
camera aperture. Single-image dehazing (SID) algorithms aim to recover the scene radiance
J from the observed image I, which requires estimating A, d, and βsc. Consequently, SID is
an inherently ill-posed problem. Existing SID methods can generally be categorized into
two broad approaches: engineered methods and deep-learning-based methods.

2.1. Engineered Methods

To estimate A, d, and βsc from a single input image, leveraging prior knowledge is
essential. He et al. [13] introduced the dark channel prior (DCP), which posits that in
most natural image patches (excluding sky or bright regions), there exist extremely dark
pixels in at least one color channel. The DCP is an effective method for estimating the
transmission map t = exp(−βscd), relying on a channel-wise minimum operation followed
by patch-based minimum filtering. He et al. [13] suggested selecting A as the brightest
pixel within the top 0.15% of pixels in the dark channel. Although DCP has been highly
influential in single-image dehazing, DCP-based methods [14–16] generally underperform
in sky and bright regions.

Zhu et al. [17] proposed the color attenuation prior (CAP), which asserts that scene
depth is proportional to the difference between saturation and brightness. They employed
a linear model for scene depth estimation, with model parameters derived via maximum
likelihood estimation. The method for estimating global atmospheric light is similar to that
of He et al. [13]. While this SID approach is computationally efficient and performs well, it
can sometimes introduce color distortion and background noise, as noted in [18]. Conse-
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quently, CAP is often used to design fast and compact SID algorithms, as demonstrated
in [19,20].

Berman et al. [21] observed that pixels in haze-free images form tight clusters in RGB
space, whereas under the influence of haze, pixels from the same cluster stretch into a
line, referred to as a haze-line in [21]. This observation led to the haze-lines prior, wherein
atmospheric light is estimated as the intersection of haze-lines in the RGB space using the
Hough transform. To estimate the transmission map, pixels are clustered into haze-lines,
and their distances to the origin are calculated. As pixels in the same cluster are dispersed
throughout the image, the haze-lines prior is non-local and therefore more robust than local
priors such as DCP and CAP. However, SID methods [22–24] based on the haze-lines prior
are susceptible to color distortion under non-homogeneous lighting conditions.

In addition to the aforementioned approaches, other effective and informative priors
have been explored in the literature, including color ellipsoid [25,26], super-pixel [27], and
rank-one [28] priors. Furthermore, SID can also be achieved through image enhancement
techniques. Galdran [29] proposed a method that fuses multiple under-exposed variants of
the input image to perform SID. Specifically, the fusion is carried out in a multiscale manner,
with the fusion weights derived from pixel-wise contrast and saturation. A subsequent
study [11] demonstrated that incorporating prior knowledge can further improve dehazing
performance. Ancuti et al. [30] combined multiscale image fusion and DCP to develop a
SID method suitable for both day and night-time scenarios. They postulated that day and
night-time images are captured under different lighting conditions, with the former under
homogeneous and the latter under heterogeneous lighting. Accordingly, they generated
two dehazing results: one using a large patch size to accommodate day-time homogeneous
light and another using a small patch size to capture night-time heterogeneous light. These
two results were then fused with a discrete Laplacian of the input to produce the final
dehazed image.

In summary, engineered methods are computationally efficient and produce qualita-
tively favorable results, primarily due to their foundation in prior knowledge of the SID
problem. This prior knowledge is derived from extensive engineering efforts and observa-
tions of real-world data. However, there are extreme cases where the prior knowledge may
fail, leading to a sharp decline in the performance of engineered methods.

2.2. Deep-Learning Methods

One of the pioneering efforts in applying deep learning to the single-image dehaz-
ing problem is DehazeNet [31], a convolutional neural network (CNN) comprising three
stages: feature extraction, feature augmentation, and non-linear inference for transmission
map estimation. The global atmospheric light is estimated using the method proposed
by He et al. [13]. Compared to more recent deep learning models, DehazeNet is computa-
tionally efficient while delivering comparable performance. However, it suffers from the
domain-shift problem due to the lack of real-world training data.

Ren et al. [32] introduced a multiscale CNN (MSCNN) for transmission map estimation.
Unlike DehazeNet, MSCNN employs a coarse-to-fine refinement approach, where a branch
with large kernel sizes generates a coarse estimate, while another branch with small kernel
sizes progressively refines the estimate to recover fine details. This refinement process
is guided by holistic edges to ensure the smoothness of transmission map values within
the same object. Despite its effectiveness, MSCNN was trained on a synthetic dataset
where haze was artificially added to clean images, resulting in suboptimal performance on
real-world images that significantly differ from the training data.

Dong et al. [33] proposed a multiscale boosted dehazing network (MSBD) incorporat-
ing boosting and error feedback mechanisms to progressively refine the dehazing result
and recover spatial image details. MSDB is a supervised network that requires a paired
dataset for training, which leads to the same challenge of underperformance on real-world
images due to the difficulty of obtaining real haze-free/hazy image pairs. In contrast,
Li et al. [34] developed an unsupervised model called “You Only Look Yourself” (YOLY).
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Inspired by the layer disentanglement principle in [35], YOLY consists of three branches
dedicated to estimating the scene radiance, transmission map, and global atmospheric light,
respectively. By adhering to the simplified Koschmieder model, YOLY can reconstruct the
input hazy image in a self-supervised manner.

Notably, YOLY relies solely on hazy images during the training phase, which Yang et al. [36]
argued leads to suboptimal performance due to the lack of information from haze-free
images. To address this, they proposed a self-augmented unpaired image dehazing method
(D4), which leverages both hazy and haze-free images in dehazing and rehazing cycles.
D4’s training objectives include pseudo scattering coefficient supervision loss and pseudo
depth supervision loss, aiming to learn physical properties that enhance the unpaired
learning process. However, D4 tends to overestimate the transmission in bright regions of
images. Subsequently, Yang et al. [37] extended D4 to video dehazing, utilizing synthesized
ego-motion and estimated depth information to improve spatial-temporal consistency.

Recently, recognizing the ill-posed nature of SID, researchers have focused on con-
ditional variational autoencoders (CVAEs) [38], vision transformers [8,39], and diffusion
models [40]. Song et al. [39] introduced DehazingFormer, which enhances the Swin Trans-
former with rescale layer normalization, soft ReLU, and spatial information aggregation.
However, DehazingFormer demonstrated poor performance when tested on real-world
datasets such as Dense-Haze [41] and NH-Haze [42]. To improve the vision transformer,
Qiu et al. [8] employed Taylor series expansion to approximate softmax-attention, resulting
in MB-TaylorFormer. They also introduced multiscale attention refinement modules to
mitigate errors arising from Taylor expansion. Despite its innovations, MB-TaylorFormer is
computationally inefficient and remains susceptible to the domain-shift problem.

Ding et al. [38] utilized CVAEs to generate multiple dehazing results from a single
input, which are then fused to produce a more accurate output. However, the high com-
putational cost of generating multiple dehazing results and the limited generalization to
real-world images are significant drawbacks. Huang et al. [40] proposed a method that
decomposes the image into null and range-space components and applies diffusion to
non-overlapping image patches. This approach, however, suffers from boundary arti-
facts, necessitating additional computational resources for compensation. Other methods,
such as those by Zheng et al. [43] and Wu et al. [44], sought to impose strict constraints
on the generation of dehazed results. Zheng et al. [43] applied curriculum constrastive
regularization, categorizing negative samples into easy, hard, and ultra-hard based on
PSNR values. Wu et al. [44] considered various types of image degradation, including
low-light illumination, color bias, and JPEG artifacts, to synthesize hazy images, aiming to
learn high-quality priors for single-image dehazing. Despite these advancements, neither
method achieves satisfactory dehazing performance on real-world images.

In conclusion, while deep learning methods offer potential, they often struggle with
real-world generalization due to the complexities of training and dataset limitations.

3. Proposed Algorithm

Figure 3 presents the block diagram of the proposed algorithm. As outlined briefly in
Section 1, the core idea is to blend the input image with its dehazed version based on the
haze conditions, enabling autonomous single-image dehazing. The image is first processed
through the following three modules:

• Unsharp masking, which enhances edge details obscured by haze.
• Haziness degree evaluator, which computes the haze density map ρI and the average

haze density ρ̄I.
• Image blending, where the input image is combined with the dehazed result based on

local haze conditions.

After the unsharp masking stage, the image undergoes dehazing based on the improved
color attenuation prior (ICAP) [18]. The dehazing process is controlled by a self-calibration
weight, derived from the average haze density. The image blending module then fuses the
input image with the dehazed result using local weights calculated from the haze density map.
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Finally, the adaptive tone remapping module post-processes the blended result to compensate
for dynamic range reduction, with guidance from the self-calibration weight.
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Figure 3. Block diagram of the proposed algorithm. ICAP refers to the improved color attenuation
prior. The bottom-left curve represents the self-calibration weight, calculated from the average haze
density of the input image, which controls the dehazing strength to accommodate varying haze
conditions. The bottom-right curve depicts the local blending weight, computed from the patch-based
haze density map. This weight controls the blending process, where the algorithm fuses the input
image and its dehazed version.

3.1. Unsharp Masking

Unsharp masking is applied as a pre-processing step to enhance detail information
obscured by haze. The process consists of four steps: RGB-to-YCbCr conversion, detail
extraction, scaling factor calculation, and detail enhancement.

First, the input image is transformed from RGB to YCbCr color space, expressed as
I = {R, G, B} → {Y, Cb, Cr}. Detail information, denoted as s, is extracted by convolving
the luminance channel Y with the Laplacian operator ∇2, such that s = ∇2 ⊛Y. To prevent
over-enhancement, the scaling factor ω is calculated as a piecewise linear function of
the local variance. The enhanced luminance Ye is then obtained by adding the scaled
detail information back to the original luminance, formulated as Ye = Y + ωs. Finally, the
enhanced image Ie is produced through YCbCr-to-RGB conversion. For a more detailed
description, interested readers are referred to [19] (Section III-A).

3.2. Adaptive Dehazing

Given the enhanced image Ie, the scene radiance J is computed by inverting the
simplified Koschmieder model as follows:

J =
Ie − A

max(t, tNBP)
+ A, (2)

where tNBP represents a lower bound derived from the no-black-pixel constraint. The
derivation of tNBP and the transmission map estimation are detailed in [18]. The global



Remote Sens. 2024, 16, 3641 7 of 19

atmospheric light is estimated using a quad-tree algorithm and compensated to prevent
the false enlargement of bright objects, as described in [45].

It follows from the relationship t = exp(−βscd) that the transmission map is expo-
nentially related to scene depth. A previous study [46] has demonstrated that scaling the
scene depth according to the average haze density enhances dehazing performance. In this
paper, we utilize the haziness degree evaluator [10] to estimate the haze density map and
the average haze density, with the scaling factor referred to as the self-calibration weight,
as described in subsequent sections.

3.2.1. Haziness Degree Evaluator

In [10], the haze density map was defined as the complement of the transmission map,
expressed as ρI = 1 − t. Thus, the task of finding the haze density map became equivalent
to determining the optimal transmission map, which was obtained by optimizing the
following objective function:

O(t) =
SV(t)σ(t)

D(t)
+ κR(t), (3)

where SV(t) represents the product of saturation and brightness, σ(t) denotes sharpness,
D(t) is the dark channel, R(t) is the regularization term, and κ is the regularization parame-
ter. The regularization term R(t) was chosen as the reciprocal of t to ensure that O(t) could
be solved analytically. As the result, the optimal transmission map t̂, the haze density map
ρI, and the average haze density ρ̄I were defined as follows:

t̂ = argmax
t

O(t), (4)

ρI = 1 − t̂, (5)

ρ̄I =
1
|Ψ| ∑

∀(x,y)∈Ψ
ρI(x, y), (6)

where Ψ represents the entire image domain and |Ψ| is the number of image pixels. Details
regarding the expression for t̂ can be found in [10] (Section 3.4).

3.2.2. Self-Calibration Weight

Given the average haze density ρ̄I, the self-calibration weight Γ is computed as follows:

Γ =



0 ρ̄I < ρ1(
ρ̄I − ρ1

ρ2 − ρ1

)n
ρ1 ≤ ρ̄I ≤ ρ2(

Γu − 1
1 − ρ2

)
(ρ̄I − ρ2) + 1 ρ̄I > ρ2

, (7)

where the upper bound Γu and the exponent n are both related to the dehazing power. To
ensure that the proposed algorithm adapts to the haze conditions of the input image, Γ is
directly multiplied by the scene depth d. As depicted in the bottom left of Figure 3, the
input image is classified into one of four categories–haze-free, mildly hazy, moderately
hazy, and densely hazy–based on its average haze density. The threshold values ρ1 = 0.8811
and ρ2 = 0.9344 are adopted from [10], where they were utilized to distinguish between
hazy and haze-free images.

• If ρ̄I < ρ1, the input image is classified as haze-free, and Γ = 0, indicating that no
dehazing is required.

• If ρ1 ≤ ρ̄I ≤ ρ2, the input image is classified as mildly or moderately hazy. Given that
the average haze density varies exponentially, we set n = 0.1 to ensure that Γ also
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varies exponentially between zero and unity, signifying an exponentially increasing
dehazing power.

• If ρ̄I > ρ2, the input image is classified as densely hazy, and haze removal should be
maximized. Consequently, Γ is empirically configured to vary linearly from unity to
an upper bound Γu = 1.2.

Once the self-calibration weight Γ is calculated, the transmission map t is Equation (2)
is updated to t = exp(−βscΓd). With the global atmospheric light A estimated via the
quad-tree decomposition algorithm [45], all variables on the right-hand side of Equation (2)
are now known, enabling the computation of the dehazed result J.

3.3. Image Blending

Following adaptive image dehazing, the input image I is blended with the dehazed
output J, as expressed by B = αJ + (1 − α)I. In the method proposed by Lee et al. [11],
a global blending weight was employed for simplicity, which facilitated the design of a
hardware accelerator. However, this global blending approach does not adequately account
for local variations, particularly in remote sensing applications, where images often contain
regions with distinctly different characteristics (for example, urban versus rural areas). To
address this limitation, we employ patch-based blending weights α, as defined below, to
achieve improved results.

α =


0 ρΩ < ρ1

ρ̄I − ρ1

ρ2 − ρ1
ρ1 ≤ ρΩ ≤ ρ2

1 ρΩ > ρ2

, (8)

where ρΩ represents the interpolated patch-based haze density map, calculated from the
haze density map ρI. Blending weights are defined as a piecewise linear function of the
patch-based haze density map, allowing the blending step to combine input patches with
their corresponding dehazed versions based on local haze conditions, as follows:

• Haze-free patches are preserved in the blending result (α = 0).
• Mildly or moderately hazy patches are fused with their corresponding dehazed

versions according to the blending weight 0 < α < 1.
• Densely hazy patches are fully dehazed (α = 1), meaning that only the dehazed

information appears in the blending result.

However, performing image blending using patch-based weights may introduce
boundary artifacts. Figure 4 presents a hazy image (sourced from the O-HAZE [47] dataset)
alongside the corresponding blending result obtained using patch-based weights. The
image was divided into 8 × 8 patches and overlaid with the average haze density values
for each patch, calculated as:

ρ̄Ωi = max

ρ̄I,
1

|Ωi| ∑
∀(x,y)∈Ωi

ρI(x, y)

, (9)

where Ωi denotes a patch within the image, and |Ωi| represents the number of pixels within Ωi.
In the blending result, two regions, marked by red rectangles, exhibit boundary artifacts. These
artifacts arise from abrupt changes in patch-based haze densities, exemplified by transitions
such as (0.1531 → 0, 0.1122 → 0) in the first region and (0 → 0.1531, 0 → 0.1082) in the
second region. For clarity, these values were min-max normalized.

To address boundary artifacts, we propose an interpolation scheme wherein the 8 × 8
patch-based haze density map is first passed through a 2 × 2 low-pass filter and then
subjected to 4× bilinear interpolation. Figure 5 illustrates the proposed scheme using an
image region from Figure 4, where abrupt changes in patch-based haze density values are
observed, leading to boundary artifacts in the blending result.
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The initial step of low-pass filtering involves convolving the patch-based haze density
map with a 2 × 2 moving average kernel. While this efficiently smooths transitions from
(0.1531 → 0, 0.1122 → 0) to (0.0830 → 0.0415, 0.0939 → 0.0721), boundary artifacts
still persist. To further reduce these artifacts, we apply 4× bilinear interpolation, which
smooths the transitions in patch-based haze density values even more. As illustrated in
Figure 5, the horizontal and vertical transitions in haze density values are now significantly
more gradual, eliminating boundary artifacts in the blending result. This demonstrates the
effectiveness of the proposed interpolation scheme.

Input superimposed by patch-based haze density values Blending result using patch-based weights (64 patches)

0.9306 0.9388 0.7204 0.5878 0.7816 0.0061 0.1265 1.0000

0.4143 0.2347 0.0000 0.0000 0.3429 0.3265 0.1367 0.3694

0.2041 0.0714 0.0000 0.0000 0.0000 0.0000 0.0510 0.2061

0.1204 0.0857 0.1531 0.0000 0.0000 0.0000 0.0000 0.2816

0.0633 0.0000 0.1122 0.0000 0.0000 0.0000 0.1531 0.2816

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1082 0.1735

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0224

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Figure 4. Hazy image and the corresponding blending result using patch-based weights. The
patch-based haze density values have been min-max normalized for clarity.

0.0830 0.0415

0.0939 0.0721

0.1531 0.0000

0.1122 0.0000

Patch-based haze 

density map
Low-pass filter

4× bilinear 

interpolation

0.0830 0.0726 0.0622 0.0519 0.0415

0.0857 0.0766 0.0674 0.0583 0.0491

0.0884 0.0805 0.0726 0.0647 0.0568

0.0912 0.0845 0.0778 0.0711 0.0644

0.0939 0.0884 0.0830 0.0775 0.0721

Blending

result

Input

𝜌𝐈
Eq. (8)

Figure 5. Illustration of the proposed interpolation scheme. The patch-based haze density values
have been min-max normalized for clarity.



Remote Sens. 2024, 16, 3641 10 of 19

3.4. Adaptive Tone Remapping

Dehazing, which fundamentally involves subtracting haze from the input image,
inevitably results in a darker image. To counteract this, we applied adaptive tone remapping
(ATR) to post-process the blending result, enhancing both luminance and chrominance.
Details about ATR can be found in [19] (Section III-C). In this paper, we introduce a slight
modification to ATR, guiding the enhancement process using the self-calibration weight
discussed in Section 3.2.2.

Let L and C represent the luminance and chrominance of the blending result, respec-
tively. The enhanced luminance Le and chrominance Ce are expressed as follows:

Le = L + ΓGLWL, (10)

Ce = C + GCWC + 0.5, (11)

where GL and GC denote the luminance and chrominance gains, and WL and WC are
the adaptive luminance and chrominance weights. We introduced Γ in Equation (11) to
implement the idea that the degree of enhancement should be proportional to the amount
of haze removed. This concept is implicitly reflected in Equation (11), where the gain
GC = (Le/L)C.

To verify the effectiveness of ATR, consider the hazy image in Figure 4. Histograms
of the red, green, and blue channels for this image, as well as for the images immediately
before and after ATR, are depicted in Figure 6. Note that the image immediately before
ATR is the blending result, while the one after ATR is the final result. It is evident from
Figure 6 that the histograms of the blending result were shifted toward the lower intensity
region, indicating that haze was removed from the input image. This also suggests that the
image was darkened. By applying ATR, the image intensities were spread out across the
intensity range, as illustrated by the histograms in pink. This demonstrates the success of
luminance and chrominance enhancement, as well as dynamic range expansion.

We used the following metric the quantify the dynamic range:

DR(dB) = 20 log10

(
Lmax

Lmin

)
, (12)

where Lmax and Lmin represent the maximum and minimum intensities, respectively. Table 1
summarizes the dynamic range values in decibels (dB). The proposed autonomous de-
hazing algorithm blends the input image with its dehazing result, thereby retaining high
image intensities, even though most image intensities are shifted toward zero. This process
approximately doubles the DR values of the input image. ATR further extends the dynamic
range, as shown in the “Improvement” column of Table 1.

0 250 0 250 0 250

0

16,000

Image intensity Image intensityImage intensity

F
re

q
u
en

cy

16,000 16,000

Red channel Green channel Blue channel

Figure 6. Histograms of red, green, and blue channels for the input image, as well as the images
before and after ATR (adaptive tone remapping).
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Table 1. Dynamic range quantification. ATR stands for adaptive tone remapping. The “Improvement”
column indicates the increase in dynamic range from the “Before ATR” to the “After ATR” column.

Channel Input Before ATR After ATR Improvement

Red 11.4079 dB 23.9731 dB 24.1545 dB 0.1814 dB
Green 9.9153 dB 17.9525 dB 18.2054 dB 0.2529 dB
Blue 7.2273 dB 12.4140 dB 13.1670 dB 0.7530 dB

4. Experimental Results

In this section, we present a comparative evaluation of the proposed algorithm against
five benchmark algorithms: DCP [13], CAP [17], DehazeNet [31], YOLY [34], and MB-
TaylorFormer [8]. Among these, DCP and CAP are engineered methods, while DehazeNet,
YOLY, and MB-TaylorFormer are deep-learning-based approaches.

We employed five public datasets for evaluation: FRIDA2 [48], D-HAZY [49], O-
HAZE [47], I-HAZE [50], and Dense-Haze [41]. The FRIDA2 dataset contains 66 haze-free
images and 264 hazy images, all generated using computer graphics, depicting various road
scenes from the driver’s point of view. D-HAZY is another synthetic dataset comprising
1472 pairs of haze-free and hazy images, where the hazy images are generated using
scene depth information captured by a Microsoft Kinect camera. In contrast, O-HAZE, I-
HAZE, and Dense-Haze are real-world datasets, consisting of 45, 30, and 55 pairs of indoor,
outdoor, and mixed indoor/outdoor images, respectively. Table 2 provides a summary of
these datasets.

Table 2. Summary of evaluation datasets.

Dataset Hazy (#) Haze-Free (#) Description

FRIDA2 [48] 264 66 Synthetic road scene images
D-HAZY [49] 1472 1472 Synthetic indoor images
O-HAZE [47] 45 45 Real outdoor images
I-HAZE [50] 30 30 Real indoor images

Dense-Haze [41] 55 55 Real indoor and outdoor images

Total 1866 1668

4.1. Qualitative Evaluation

Figure 7 demonstrates the dehazing performance of six methods on images with
various haze conditions. The haze condition of each image was determined by comparing
its average haze density, ρ̄I, against two thresholds, ρ1 = 0.8811 and ρ2 = 0.9344. The last
column, labeled “Failure”, corresponds to cases where the input image is haze-free but was
misclassified as hazy by the proposed algorithm.

It can be observed that engineered methods (DCP and CAP) tend to excessively dehaze
input images, resulting in over-saturated outputs, as seen in the sky regions of mildly,
moderately and haze-free images. In contrast, deep learning methods (DehazeNet, YOLY,
and MB-TaylorFormer) produce more visually satisfying results without noticeable artifacts.
However, they share a common limitation related to the domain-shift problem, meaning
they may perform less effectively on images that differ from those used in their training.
Among these methods, the recent MB-TaylorFormer exhibits the best performance across
the five cases presented in Figure 7.

The proposed method performs comparatively to deep learning methods while clearly
outperforming engineered methods. It effectively handles both haze-free and hazy images
under different haze conditions. Notably, its dehazing performance is the most visually
pleasing, attributed to the use of local blending weights and adaptive tone remapping. In
the “Failure” column, although the proposed method misclassified a haze-free image as
hazy and performed dehazing, the result did not exhibit any visual artifacts.
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Figure 7. Qualitative evaluation of the proposed algorithm compared to five benchmark methods on
images with varying haze conditions. The haze condition was determined by comparing the average
haze density, ρ̄I, against two thresholds, ρ1 = 0.8811 and ρ2 = 0.9344.

We also compared the dehazing performance on an airport aerial image and its hazy
variants (created using the haze synthesis process presented in [11]). As depicted in Figure 8,
DCP demonstrates strong dehazing power, which is beneficial for images with moderate
and dense haze but may impair haze-free and mildly hazy images. CAP, DehazeNet, and
YOLY perform fairly well on haze-free, mildly, and moderately hazy images; however, their
performance on densely hazy images is less impressive. Similar to DCP, MB-TaylorFormer
shows strong dehazing power, which may not be advantageous for haze-free and mildly
hazy images.

In contrast, the proposed method effectively handles varying haze conditions. It
accurately classifies input images as haze-free, mildly, moderately, or densely hazy and
processes them accordingly. The use of local blending weights, derived from local haze
densities, enhances texture details and produces visually satisfying results. In Section 4.4,
we will reuse the images from Figure 8 to analyze the object detection performance of the
YOLOv9 algorithm.
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Figure 8. Qualitative evaluation of the proposed algorithm and five benchmark methods on an airport
aerial image under different haze conditions. The haze condition was determined by comparing the
average haze density, ρ̄I, against two thresholds, ρ1 = 0.8811 and ρ2 = 0.9344.
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4.2. Quantitative Evaluation

For quantitative assessment, we utilized two metrics: the feature similarity extended
to color images (FSIMc) [51] and the tone-mapped image quality index (TMQI) [52]. Both
metrics range from zero to one, with higher values indicating better performance. To obtain
FSIMc and TMQI results, we used the source code and pretrained model (for deep learning
methods) provided by the respective authors. Notably, for MB-TaylorFormer, which has six
different pretrained models, we selected the model that achieved the highest average score
of (FSIMc + TMQI)/2.

Table 3 summarizes the average FSIMc and TMQI values across five datasets, with the
best and second-best results boldfaced and italicized, respectively. In terms of FSIMc, the pro-
posed method exhibits the best performance on FRIDA2 and I-HAZE, though the difference
compared to the second-best deep learning methods (DehazeNet and MB-TaylorFormer)
is marginal. On D-HAZY, O-HAZE, and Dense-Haze, the proposed method ranks fourth,
third, and third, respectively, showing comparable performance to the top two methods.
Regarding TMQI, the proposed method ranks first on O-HAZE and second on I-HAZE, but
is ranked third, fourth, and third on FRIDA2, D-HAZY, and Dense-Haze, respectively.

Overall, the proposed method ranks first or second in terms of FSIMc and TMQI,
demonstrating its satisfactory dehazing performance relative to both engineered and deep
learning benchmark methods.

The underperformance of YOLY is noteworthy. As discussed in Section 2, YOLY is
an unsupervised method trained solely on hazy images, which limits its knowledge of
the haze-free domain. This limitation affects the calculation of FSIMc and TMQI, which
require haze-free images. Consequently, while YOLY performs reasonably in qualitative
evaluations, it underperforms in quantitative assessments.

Table 3. Average quantitative results across different datasets. The best and second-best results are
boldfaced and italicized, respectively. MB-TF is the shorthand notation for MB-TaylorFormer. The
upward arrow indicates that higher values are better.

Dataset
Method DCP CAP DehazeNet YOLY MB-TF Proposed

FSIMc ↑

FRIDA2 0.7746 0.7918 0.7963 0.7849 0.7158 0.8024
D-HAZY 0.9002 0.8880 0.8874 0.7383 0.7727 0.8773
O-HAZE 0.8423 0.7738 0.7865 0.6997 0.8420 0.8320
I-HAZE 0.8208 0.8252 0.8482 0.7564 0.8692 0.8727

Dense-Haze 0.6419 0.5773 0.5573 0.5763 0.7976 0.5869

Total 0.7746 0.7693 0.7725 0.7111 0.7544 0.7863

TMQI ↑

FRIDA2 0.7291 0.7385 0.7366 0.7176 0.7631 0.7374
D-HAZY 0.8631 0.8206 0.7966 0.6817 0.7428 0.7913
O-HAZE 0.8403 0.8118 0.8413 0.6566 0.8732 0.9058
I-HAZE 0.7319 0.7512 0.7598 0.6936 0.8655 0.8334

Dense-Haze 0.6383 0.5955 0.5723 0.5107 0.7237 0.6124

Total 0.7357 0.7336 0.7312 0.6520 0.7761 0.7489

4.3. Execution Time Evaluation

Table 4 summarizes the execution time of six methods across different image resolu-
tions, ranging from 640 × 480 (VGA) to 7680 × 4320 (8K UHD). The measurements were
conducted on a host computer equipped with an Intel Core i9-9900K (3.6 GHz) CPU, 64 GB
of RAM, and an Nvidia TITAN RTX.

As observed, two deep-learning-based methods, YOLY and MB-TaylorFormer, are
the least efficient in terms of time and memory usage. This result aligns with the well-
known drawback of deep learning methods: high computational cost. Notably, RAM
and GPU memory were exhausted when these methods were applied to DCI 4K and 8K
UHD images. Consequently, the execution time for these resolutions is marked as not
available. Similarly, the DCP method is computationally inefficient, with its execution time
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increasing exponentially as image resolution increases, leading to RAM exhaustion during
the processing of 8K UHD images.

The top three methods in terms of efficiency are CAP, our proposed algorithm, and
DehazeNet. CAP, as discussed in Section 2, is a fast and compact algorithm for single-image
dehazing, and this evaluation further supports that fact. Our proposed method ranks
second in terms of processing speed, approximately twice as slow as CAP. However, it is
important to note that the proposed method features autonomous dehazing capabilities
and outperforms CAP in both qualitative and quantitative assessments.

Table 4. Execution time in seconds of six methods on different image resolutions. The best and
second-best results are boldfaced and italicized, respectively. NA stands for not available with the
underlying cause, REx (RAM Exhaustion) or MEx (Memory Exhaustion), in parentheses.

Method
Resolution VGA

640 × 480
SVGA

800 × 600
HD

1024 × 768
FHD

1920 × 1080
DCI 4K

4096 × 2160
8K UHD

7680 × 4320
DCP 12.64 19.94 32.37 94.25 470.21 NA (REx)
CAP 0.22 0.34 0.64 1.51 6.39 25.20

DehazeNet 1.53 2.39 3.88 10.68 47.35 178.81
YOLY 188.03 398.28 728.83 1875.56 NA (MEx) NA (MEx)

MB-TaylorFormer 36.17 52.88 92.38 226.68 NA (REx) NA (REx)
Proposed 0.80 1.02 1.60 3.32 14.74 53.28

4.4. Remote Sensing Application

Figure 9 illustrates and Table 5 summarizes the detection results of the YOLOv9 object
detection algorithm on an airport aerial image under various haze conditions. In the
case of the haze-free image, all five benchmark algorithms fail to recognize the haze-free
status and attempt to remove haze, which degrades image quality and reduces YOLOv9’s
performance. For example, the number of correctly detected airplanes decreases by 1, 2, 1,
5, and 4 for DCP, CAP, DehazeNet, YOLY, and MB-TaylorFormer, respectively.

A similar observation is noted for mildly hazy images. However, when the image is
affected by moderate or dense haze, most benchmark algorithms, except for YOLY, begin
to benefit YOLOv9, either by increasing the number of correctly detected airplanes or by
decreasing the number of false detections.

In all scenarios, the proposed algorithm consistently enhances YOLOv9’s performance,
particularly in moderately hazy conditions, where YOLOv9 demonstrates a 1.75× improve-
ment with no detection failures. However, for densely hazy images, while YOLOv9 detects
four objects, two of them are misclassified as birds. In this situation, the proposed algorithm
underperforms slightly compared to MB-TaylorFormer.

Table 5. Summary of detection results for the YOLOv9 object detection algorithm.

Method
Case Haze-Free Thin Moderate Dense

Airplane (#) Failure (#) Airplane (#) Failure (#) Airplane (#) Failure (#) Airplane (#) Failure (#)
Input 5 2 5 2 4 1 2 0
DCP 4 1 5 3 4 1 2 1
CAP 3 3 3 3 5 2 2 0

DehazeNet 4 2 4 3 6 2 2 0
YOLY 0 1 0 1 3 1 0 0

MB-TaylorFormer 1 3 1 2 4 0 4 0
Proposed 5 2 6 3 7 0 2 2
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Figure 9. Detection results of the YOLOv9 object detection algorithm on an airport aerial image under
various haze conditions. The haze condition was determined by comparing the average haze density,
ρ̄I, against two thresholds, ρ1 = 0.8811 and ρ2 = 0.9344. Notes: yellow labels represent airplanes,
blue labels represent birds, and orange labels represent knifes.
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5. Conclusions

In this paper, we introduced an autonomous single-image dehazing algorithm consist-
ing of four key steps: unsharp masking, adaptive dehazing, image blending, and adaptive
tone remapping. Our primary contribution is the use of patch-based blending weights
to merge the input image with its dehazed result, which enhances local textures and pro-
duces a more visually appealing output. To address boundary artifacts, we proposed an
interpolation scheme to smooth out abrupt changes in the patch-based haze density map.
We conducted a comparative evaluation against five benchmark methods, including both
engineered and deep-learning-based approaches. Qualitative, quantitative, and execution
time evaluations demonstrated the effectiveness of the proposed algorithm. Furthermore,
an application of image dehazing in aerial object detection highlighted the crucial role of
our autonomous dehazing method in remote sensing applications.
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