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Abstract: Real-time image dehazing is crucial for remote sensing systems, particularly in
applications requiring immediate and reliable visual data. By restoring contrast and fidelity
as images are captured, real-time dehazing enhances image quality on the fly. Existing
dehazing algorithms often prioritize visual quality and color restoration but rely on compu-
tationally intensive methods, making them unsuitable for real-time processing. Moreover,
these methods typically perform well under moderate to dense haze conditions but lack
adaptability to varying haze levels, limiting their general applicability. To address these
challenges, this paper presents an autonomous image dehazing method and its correspond-
ing FPGA-based accelerator, which effectively balance image quality and computational
efficiency for real-time processing. Autonomous dehazing is achieved by fusing the input
image with its dehazed counterpart, where fusion weights are dynamically determined
based on the local haziness degree. The FPGA accelerator performs computations with
strict timing requirements during the vertical blanking interval, ensuring smooth and
flicker-free processing of input data streams. Experimental results validate the effectiveness
of the proposed method, and hardware implementation results demonstrate that the FPGA
accelerator achieves a processing rate of 45.34 frames per second at DCI 4K resolution while
maintaining efficient utilization of hardware resources.

Keywords: autonomous image dehazing; image fusion; real-time processing; vertical
blanking interval

1. Introduction
Remote sensing image systems capture and analyze Earth’s surface data using plat-

forms such as satellites, drones, and aircrafts. These systems support applications in climate
monitoring, agriculture, urban planning, defense, and disaster management. However,
atmospheric conditions such as haze, fog, dust, and pollution degrade image quality,
obscuring surface details and complicating analysis. Image dehazing is crucial for mit-
igating these effects, enhancing visual clarity, contrast, and color fidelity. Over the past
two decades, numerous dehazing methods have been developed, many based on the
atmospheric scattering model [1]:

I(x, y) = J(x, y)t(x, y) + A[1 − t(x, y)], (1)
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where I, J, t, and A represent the hazy image, the clean image, the transmission map,
and the global atmospheric light, respectively. Bold variables denote three-channel values
(RGB), while plain text denotes single-channel variables. The indices x and y correspond to
pixel coordinates.

Dehazing methods are broadly categorized into non-learning-based and learning-
based approaches. While a comprehensive review of these methods is beyond the scope of
this work, interested readers are directed to [2–4] for further details. This section focuses
on daytime dehazing, highlighting key methods summarized in Table 1.

Table 1. Summary of image dehazing algorithms.

Category Sub-Category Year Paper Core Technique(s) Remarks

Non-learning

Prior 2011 [5] Filtering - Discovering dark channel prior (DCP)
- Exhibiting poor performance in sky and bright regions

Image enhancement 2012 [6] Filtering
- White-balancing the input image to facilitate the use of A = {1, 1, 1}
- Adopting median of medians along lines to estimate the atmospheric veil
- Suffering from halo artifacts

Prior 2015 [7] Maximum likelihood
estimates (MLE)

- Discovering color attenuation prior (CAP)
- Adopting linear regression to estimate scene depth from brightness and saturation
- Prone to background noise and color distortion

Image enhancement 2018 [8] Image fusion
- Dehazing via the fusion of artificially underexposed images
- Computationally efficient
- Limited in handling diverse haze conditions

Prior 2018 [9]
Hough transform
and weighted least
squares (WLS)

- Discovering haze-lines prior (HLP)
- Demonstrating improved robustness compared to local priors
- Prone to color distortion under non-homogeneous lighting conditions

Prior 2019 [10] Filtering and MLE
- Improving CAP to resolve background noise and color distortion
- Computationally efficient
- Poor performance in dense haze

Prior 2021 [11] Filtering and
image fusion

- Nighttime dehazing method based on DCP and Retinex theory
- Adopting color transfer to handle non-homogeneous lighting
- Requiring careful tuning of performance-critical parameters

Image enhancement 2022 [12] Image fusion
- Incorporating DCP into the image-fusion-based dehazing scheme
- Developing a self-calibrating factor for autonomous dehazing
- Supporting real-time dehazing with an FPGA accelerator

Prior 2022 [13] Filtering and MLE
- Complete method for preprocessing-dehazing-postprocessing hazy images
- Based on improved CAP
- Poor performance in dense haze

Prior 2023 [14] Filtering
- DCP-based dehazing method
- Computing the transmission map as the mean of three maps from each channel
- Suffering from halo artifacts

Prior 2023 [15] Filtering - Discovering saturation line prior
- Requiring careful tuning of performance-critical parameters

Prior 2024 [16] Filtering
- Adopting DCP to estimate transmission map from superpixels
- Adopting CAP and BCP (bright channel prior) to estimate atmospheric light
- Limited by the adopted priors

Prior 2024 [17] Filtering and MLE - Improving the self-calibrating factor for autonomous dehazing
- Supporting real-time dehazing with an FPGA accelerator

Learning

Atmospheric
scattering
model (ASM)

2016 [18] Convolutional neural
network (CNN)

- Adopting a three-stage CNN for transmission map estimation
- Computationally efficient compared to learning-based methods
- Suffering from domain-shift issues

ASM 2020 [19] CNN
- Estimating the transmission map in a coarse-to-fine manner
- Imposing holistic edges for smooth transmission map within the same object
- Suffering from domain-shift issues

End-to-end (E2E) 2020 [20] Autoencoder (AE) - Progressive refining dehazing results through boosting and error feedback
- Suffering from domain-shift issues

E2E 2021 [21] AE - Exploiting ASM and layer disentanglement to achieve unsupervised dehazing
- Limited generalizability

ASM 2022 [22] AE - Exploiting CycleGAN with ASM to achieve unpaired dehazing
- Likely to overestimate the transmission map in bright regions

E2E 2023 [23] Vision transformer
- Enhancing Swin Transformer’s architecture
- Suffering from domain-shift issues
- Prone to color distortion in dense haze

E2E 2023 [24] CNN
- Adopting curriculum learning to improve dehazing performance
- Classifying negative samples into easy, hard, and ultra-hard
- Suffering from domain-shift issues
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Table 1. Cont.

Category Sub-Category Year Paper Core Technique(s) Remarks

Learning

E2E 2023 [25] AE - Considering various degradation types to synthesize hazy images
- Suffering from domain-shift issues

E2E 2024 [26] Diffusion model - Adopting a region-based diffusion module to handle high-resolution images
- Adopting range-null-space decomposition to facilitate reverse diffusion process

E2E 2024 [27] Conditional
variational AEs

- Adopting conditional variational AEs to generate multiple dehazing results
- Fusing the dehazing results to generate a more accurate output

1.1. Non-Learning-Based Dehazing

Non-learning-based methods leverage domain knowledge or image enhancement
techniques for dehazing. A widely adopted approach is the dark channel prior (DCP) [5],
which exploits the tendency of haze-free images to contain at least one dark channel per
local patch, whereas hazy regions exhibit higher brightness. The transmission map is
estimated via a channel-wise minimum operation followed by a minimum filter. Global at-
mospheric light is typically selected from the top 0.15% of pixels with the highest intensities
in the dark channel [5,11,14,16].

Despite its effectiveness, DCP struggles with sky regions and bright objects, where its
assumptions fail. Furthermore, DCP and other priors, such as the color attenuation prior
(CAP) [7] and color ellipsoid prior (CEP) [28], are derived from the analysis of small image
patches, limiting their performance on full images. In contrast, the haze-lines prior [9]
globally models pixel distributions in RGB space. Clean images form compact clusters,
while hazy images extend into haze-lines, whose intersection estimates atmospheric light.
The transmission map is derived from the haze-lines’ distance to the origin. Although more
robust than DCP, the haze-lines prior can introduce color distortions under heterogeneous
lighting conditions.

Another category involves image enhancement techniques. For example, ref. [8]
applied artificial under-exposure and multiscale image fusion to enhance contrast and
suppress haze. Gamma correction with varying gamma values was used to generate
under-exposed images, which were fused based on pixel-wise contrast and saturation.
A follow-up study [12] improved this approach by integrating the dark channel into the
fusion process. Similarly, dark channel information and multiscale image fusion were
combined in [29] for both daytime and nighttime image dehazing applications.

While non-learning-based methods are computationally efficient and visually inter-
pretable, they rely on engineered priors, limiting generalizability. For example, DCP fails
in bright regions, where its assumptions do not hold.

1.2. Learning-Based Dehazing

To overcome prior-based limitations, deep neural networks (DNNs) have been widely
explored. One of the earliest models, DehazeNet [18], used a three-stage convolutional
neural network (CNN) to estimate the transmission map, while atmospheric light was
derived from DCP. Despite moderate complexity, DehazeNet improved upon prior-based
methods but suffered from domain shift due to the lack of real hazy/haze-free image pairs
for training.

A subsequent model [19] incorporated multiscale processing, where a CNN branch
with large kernels produced a coarse estimate of the transmission map, refined by another
branch with smaller kernels to recover fine details. To enforce smoothness within objects,
holistic edge priors were employed. While this improved accuracy, domain shift remained
an issue.

To address this, unsupervised models, such as YOLY [21] (You Only Look Yourself),
adopted a layer disentanglement strategy [30], jointly estimating the transmission map,
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atmospheric light, and scene radiance, reconstructing the hazy input using Equation (1).
Alternatively, unpaired learning models, such as D4 [22,31], leveraged arbitrary hazy and
haze-free images for training. D4 estimated the atmospheric scattering coefficient during
dehazing and applied it for synthetic rehazing, improving robustness. A later extension [31]
incorporated ego-motion synthesis and depth estimation for video dehazing. However,
differentiating bright regions from dense haze remained challenging.

Recent advances include conditional variational autoencoders [27], vision transformers [23,32],
and diffusion models [26,33], yet domain shift continues to hinder real-world deployment.
In summary, while learning-based dehazing improves generalizability over non-learning-
based methods, challenges such as high computational cost and domain shift persist,
necessitating future research for practical applications.

2. Real-Time Image Dehazing
NTSC (National Television System Committee) and PAL (Phase Alternating Line), the

predominant analog television standards, define frame rates of 30 and 25 frames per second
(fps), respectively, setting the benchmark for real-time video processing. Despite the transi-
tion to digital ATSC (Advanced Television Systems Committee) standards, these frame rate
requirements remain unchanged. As real-time processing is essential for practical deploy-
ment, achieving these frame rates is a critical criterion for image processing algorithms.

Table 2 presents the processing speeds of various dehazing algorithms at different
resolutions, measured in fps. Six benchmark methods with publicly available source
codes and parameter configurations were evaluated in MATLAB R2019a and Python 3.9.9
(PyTorch 1.12.0 + cu116). All experiments were conducted on a computer with an Intel
Core i9-9900K (3.6 GHz) CPU, 64 GB RAM, and an Nvidia TITAN RTX GPU.

Table 2. Processing speeds (frames per second, fps) of various dehazing methods across differ-
ent image resolutions. NA indicates that the processing speed could not be measured due to
memory exhaustion.

Method
Resolution VGA SVGA HD FHD DCI 4K 8K UHD

640 × 480 800 × 600 1024 × 768 1920 × 1080 4096 × 2160 7680 × 4320

Non-learning
[6] 3.571 1.695 1.316 0.662 0.111 0.027
[7] 4.545 2.941 1.563 0.662 0.156 0.040

[13] 10.000 5.882 3.704 1.471 0.339 0.090

Learning
[18] 0.654 0.418 0.258 0.094 0.021 0.006
[19] 1.852 1.136 0.654 0.292 0.056 0.004
[21] 0.005 0.003 0.001 0.001 NA NA

Results indicate that non-learning-based methods are generally faster than learning-
based ones, yet even the fastest achieves only 10 fps at VGA resolution, failing to meet
real-time requirements. Although lightweight and video-specific DNNs [31,34] exist, they
require power-intensive GPUs and remain inadequate for real-time processing.

Another runtime comparison in [28] reports the fastest non-learning-based method,
implemented in C/C++, with an execution time of 0.12 s/Mpixels, corresponding to
27.127 fps at VGA resolution, outperforming MATLAB implementations listed in Table 2
and meeting real-time requirements. However, performance drops to 17.361 fps at SVGA
resolution, falling short of real-time constraints.

FPGAs offer a promising solution for real-time image dehazing due to their low
power consumption and reconfigurability. Table 3 summarizes existing FPGA-based
implementations, most of which leverage non-learning methods like DCP for efficient
hardware realization. A learning-based FPGA implementation was presented in [35], but
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its simplistic CNN architecture, primarily using 1 × 1 kernels, introduces artifacts such as
color distortion, limiting its practicality.

Table 3. Summary of real-time image dehazing implementations.

Year Paper Platform Core Technique(s) Adopted Tool(s) Remarks

2013 [36] FPGA (Altera Stratix
EP1S10F780C6) Filtering Verilog HDL

- Replacing soft matting in DCP with an edge-preserving filter
- Designing an 11-stage pipelined FPGA accelerator
- Achieving a throughput of 58.43 Mpixels/s

2015 [37] DSP (TMS320C6678) Filtering C/C++ (OpenMP) - Direct implementation of DCP
- Achieving 21.277 fps at 600 × 600 resolution

2016 [38] FPGA (Altera Stratix
EP1S10F780C6) Filtering Verilog HDL

- Direct implementation of DCP
- Designing a 15-stage pipelined FPGA accelerator
- Achieving a throughput of 116 Mpixels/s

2017 [39] GPU (NVIDIA
Tegra K1)

Total variation
regularization

C/C++ (OpenCV and
CUDA)

- Estimating the transmission map using locally adaptive
neighborhoods and order statistics
- Achieving 32.4 fps at 800 × 600 resolution

2018 [40] FPGA (Altera
Cyclone II) Filtering NA - Simplifying DCP to improve processing speed

- Achieving 4.386 fps at 320 × 240 resolution

2019 [41] ASIC (TSMC’s
0.13 µm) Filtering Verilog HDL

- Replacing soft matting in DCP with an edge-preserving filter
- Adjusting atmospheric light between successive frames to
avoid flickering
- Designing a 7-stage pipelined ASIC accelerator
- Achieving a throughput of 200 Mpixels/s

2021 [35] FPGA (Xilinx
XC7Z020-3CLG484) CNN Verilog HDL

- Adopting a lightweight CNN to estimate the transmission map
from the input image and its dark channel
- Achieving a throughput of 200 Mpixels/s

2022 [12] FPGA (Xilinx
XC7Z045-2FFG900) Image fusion Verilog HDL

- Fusing the input image and its dehazed result to achieve
autonomous dehazing
- Developing a self-calibrating factor to guide the fusion process
- Achieving a throughput of 271.37 Mpixels/s

2023 [42]
FPGA (Xilinx
XC7Z020-
CLG484-1)

Filtering Verilog HDL

- Estimating the pixel-wise transmission map from saturation
- Downsampling the input image before estimating atmospheric
light
- Designing a 7-stage pipelined FPGA accelerator
- Achieving a throughput of 85.2 Mpixels/s

2024 [43]
FPGA (Xilinx
XC7K325T-
2FFG900C)

Image fusion NA
- Fusing high-boost filtering and linear stretching results of the
input image to achieve dehazing
- Achieving a throughput of 72.299 Mpixels/s

2024 [44]
FPGA (Xilinx
XC7Z020-
CLG484-1)

Filtering Simulink HLS
- Simplifying DCP to improve processing speed
- Incorporating color cast correction into the dehazing process
- Achieving a throughput of 50 Mpixels/s

This paper presents an improved real-time FPGA-based dehazing implementation,
addressing limitations in our prior work [12]. The previous approach neglected spatial
haze variations during fusion due to the inability to compute fusion weights within the
active frame interval. The proposed method leverages the vertical blanking interval to
precompute fusion weights that account for local haze distribution. This enhancement
improves dehazing quality while maintaining real-time performance, achieving 45.34 fps
at DCI 4K resolution.

The main contributions of this paper are as follows:

• A novel hardware architecture exploiting the vertical blanking interval for real-
time video processing, mitigating flickering and enabling high-quality autonomous
image dehazing;

• A fast and compact FPGA implementation capable of processing DCI 4K video at
45.34 fps.

3. Proposed FPGA Implementation
Figure 1 presents the block diagram of the proposed autonomous dehazing system.

The input image undergoes preprocessing via unsharp masking, followed by dehazing
using an improved color attenuation prior (ICAP). The dehazing process is controlled
by a self-calibrating weight to ensure the dehazing strength adapts to the input haze
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conditions. A haziness degree evaluator [45] calculates the average haze density and a
patch-based haze density map, which are used to compute the self-calibrating weight
and local blending weights, respectively. The input image is then fused with its dehazed
counterpart using the blending weights. The fusion result undergoes postprocessing
through adaptive tone remapping, also controlled by the self-calibrating weight, to maintain
enhancement consistency with the input haze conditions.

Unsharp 

masking

ICAP-based 

image dehazing

Adaptive tone 

remapping

Haziness 

degree 

evaluator

Self-calibrating 

weight

Local blending 

weights
Interpolation

Image 

blending

VAI active

VBI active

AVG.

Patch-based

haze density

values

Input

frame

Output

frame

(a)

Frame #(N-2) Frame #(N-1) Frame #N Frame #(N+1) Frame #(N+2)

VAI VAI VAIVAIVAI

VBI VBI VBI VBI VBIVBI

(b)

Figure 1. Overview of the proposed FPGA implementation. (a) Simplified block diagram. (b) Input
frame data with video active signal. ICAP, VAI, and VBI stand for improved color attenuation prior,
video active interval, and video blanking interval, respectively.

Figure 1a illustrates the operational timeline of the system, where green blocks cor-
respond to processes executed during the video active interval (VAI), and the blue block
represents computations performed during the video blanking interval (VBI). The VAI and
VBI are depicted in Figure 1b. The blue block, a key contribution of this work, differentiates
the proposed system from our previous design [12]. It computes local blending weights
based on patch-based haze density values, enabling haze-aware fusion and significantly im-
proving autonomous dehazing performance. Consequently, this component is the primary
focus of this section.

3.1. Unsharp Masking

Haze is generally a smooth, low-frequency component in an image, except at depth
discontinuities, which reduces the clarity of image details. To counteract this effect, unsharp
masking (UM) is applied. As the luminance channel captures shapes, patterns, and fine
details of objects in the scene, the UM process is performed on the luminance channel,
which is obtained through the following color space conversion: Y

Cb
Cr

 =

 0.183 0.614 0.062
−0.101 −0.338 0.439
0.439 −0.399 −0.040


IR

IG

IB

+

 16
128
128

, (2)

where {IR, IG, IB} are the red, green, and blue color channels of the input image I, respec-
tively, Y is the luminance, and {Cb, Cr} are the chrominance components.
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The enhancement formula for image detail is given by:

Ye = Y + ω · e, (3)

where Ye represents the luminance of the enhanced image, ω is the scaling weight, and e
denotes the image details. The scaling weight ensures proportional enhancement, assigning
higher weights to less detailed regions and lower weights to regions with richer details.
This weight is computed as a piecewise linear function of the local variance v, bounded by
two predefined thresholds, i.e., ω1 and ω2, as shown in Equation (4). The local variance v
is computed using Equation (5), where ⊛ represents the convolution operation and U is
the averaging kernel defined in Equation (6). Image details e are extracted by convolving
the luminance channel with a Laplacian operator, as defined in Equation (8).

ω =


ω1 v < v1(

ω2 − ω1

v2 − v1

)
v +

ω1v2 − ω2v1

v2 − v1
v1 ≤ vs. ≤ v2

ω2 v > v2

, (4)

vs. = Y2 ⊛U − (Y ⊛U)2, (5)

U ≜

1 1 1
1 1 1
1 1 1

/9, (6)

e = Y ⊛∇2, (7)

∇2 ≜

0 1 0
1 −4 1
0 1 0

. (8)

After enhancement, the image is converted back to the RGB color space for the subse-
quent dehazing step. The conversion is defined as:IR

e
IG
e

IB
e

 =

1.164 0 1.793
1.164 −0.213 −0.534
1.164 2.115 0


 Ye − 16

Cb − 128
Cr − 128

. (9)

Figure 2 illustrates the simplified data path of the unsharp masking process. Mod-
ules represented by plain blocks perform simple arithmetic operations, which are easily
implemented using building blocks such as adders, multipliers, and multiplexers. Shaded
blocks, on the other hand, involve two-dimensional filtering and require line memories to
access pixel neighborhoods within the kernel. For clarity and to maintain the readability of
the main text, the detailed implementation of image filters is provided in Appendix A.

RGB

to

YCbCr

𝐼𝑅

𝐼𝐵
𝐼𝐺

∇2

𝑈 Square

Square 𝑈

+ Eq. (4)

×

+ YCbCr

to

RGB

𝐼𝑒
𝑅

𝐼𝑒
𝐵

𝐼𝑒
𝐺

𝑌 𝑌𝑒

Cb

Cr

𝑣1 𝑣2
+

−

𝑒

𝜔𝑣

𝑈
Involve filtering

with the kernel 𝑈

𝜔1 𝜔2

Figure 2. Simplified data path of the unsharp masking process. Plain modules perform pixel-wise
operations, while shaded modules involve two-dimensional filtering (refer to Appendix A).
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3.2. Dehazing via Improved Color Attenuation Prior

Given the preprocessed image Ie = {IR
e , IG

e , IB
e }, the dehazing process can be per-

formed by isolating J from the Koschmieder model, as follows:

J =
Ie − A

t
+ A. (10)

Two variables, A and t, need to be determined for the dehazing process. Regarding A,
it is typically approximated as the brightest pixel in the image, that is, A = {255, 255, 255}.
However, in cases when the input image contains shinny objects or artificial light sources,
setting A = {255, 255, 255} may lead to over-dehazing, which darkens the entire image
and causes the loss of shadow details. In the proposed system, this limitation of using
A = {255, 255, 255} is well-addressed by incorporating adaptive tone remapping (described
in Section 3.4), providing an effective solution to mitigate such undesirable effects.

The transmission map t is estimated using the improved color attenuation prior
(ICAP) [10], chosen for its simplicity and effectiveness. As noted earlier, haze is depth-
dependent and can be expressed as t = exp(−βcd), where d is the scene depth and βc is the
atmospheric scattering coefficient. Accurately estimating βc is highly complex, as it depends
on the physical and chemical properties of suspended particles in the atmosphere [46].
Consequently, a common practice in image dehazing is to set βc = 1. In ICAP, a linear
model is employed to estimate d from saturation S and brightness V, as follows:

d = θ0 + θ1S + θ2V, (11)

where {θ0, θ1, θ2} are model parameters estimated through maximum likelihood estimation.
The estimated scene depth is then refined using a modified hybrid median filter (mHMF),
an edge-preserving smoothing filter, to ensure that the scene depth remains smooth except
at depth discontinuities. As detailed in Section 3.5, the scene depth is further multiplied by
a self-calibrating weight to adjust the dehazing strength according to the haze condition
of the input image. Finally, before substituting the transmission map into Equation (10),
a no-black-pixel (NBP) constraint [6] is applied to prevent undershoots that could occur
during the dehazing process.

Figure 3 illustrates the simplified data path of the ICAP-based image dehaz-
ing process. Saturation and brightness values are computed using the formulas in
Equations (12) and (13). The mHMF implementation is based on the optimized merg-
ing sorting network [47]. The NBP constraint is applied using a filter based on the kernel
U, defined in Equation (6), with further details provided in Appendix A. The computation
and implementation of the self-calibrating weight are discussed in Section 3.5.

S =

max
c∈{R,G,B}

Ic
e − min

c∈{R,G,B}
Ic
e

max
c∈{R,G,B}

Ic
e

, (12)

V = max
c∈{R,G,B}

Ic
e . (13)

𝐼𝑒
𝑅

𝐼𝑒
𝐵

𝐼𝑒
𝐺 MIN

MAX

+ ÷

Eq. (11) mHMF × NBP

Eq. (10)

𝐽𝑅

𝐽𝐵
𝐽𝐺

𝐼𝑒
𝐵𝐼𝑒

𝐺𝐼𝑒
𝑅

255 255 255

Γ𝜃2𝜃1𝜃0

𝑉

𝑆

𝑡𝑑

(self-calibrating weight)

(atmospheric light)

−

+

Figure 3. Simplified data path of the dehazing process. mHMF and NBP are abbreviations for the
modified hybrid median filter and no-black-pixel, respectively.
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ICAP is selected for its computational efficiency rather than dehazing performance,
making it well-suited for real-time processing. However, its primary limitation stems from
its simplicity. The linear equation for scene depth estimation assumes a typical scenario
where haze density increases with distance from the camera. This assumption breaks down
in dense or heterogeneous haze conditions, where haze distribution is not strictly correlated
with scene depth. Consequently, Equation (11) fails to provide accurate estimates, leading
to reduced performance.

3.3. Image Blending

The input image I and its dehazed counterpart J are fused using local blending weights
α, as expressed in the following equation:

B = αJ + (1 − α)I, (14)

where B represents the blended result. The derivation of α is deferred to Section 3.5, as it
constitutes the main contribution of this paper. The rationale for employing image blending
can be summarized as follows:

• If the input image is haze-free, applying a dehazing operation introduces visual
artifacts. In this case, α = 0 ensures the input image remains unchanged.

• For images affected by mild or moderate haze, the dehazing strength must be con-
trolled to prevent over-dehazing. Here, α is set to vary linearly between zero and
unity, that is, 0 < α < 1.

• For densely hazed images, full-scale dehazing is required. Thus, α = 1 is used to
completely suppress the contribution of the input image in the blending process.

The implementation of the image blending process is straightforward, requiring only
multipliers and adders, as illustrated in Figure 4.
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Figure 4. Simplified data path of the blending process.

3.4. Adaptive Tone Remapping

In layperson’s terms, image dehazing involves removing haze from an image, which
can make the image appear dimmer than before. As a result, a postprocessing step is neces-
sary to enhance image quality. Specifically, as the luminance channel directly influences
image brightness, luminance enhancement is applied to address this issue. However, lumi-
nance enhancement alone can lead to unnatural appearance; thus, chrominance expansion
is also necessary. To achieve this, the proposed system employs adaptive tone remapping
(ATR), which consists of two stages: luminance enhancement, followed by chrominance
expansion to maintain a natural appearance. These steps are expressed as below:

YB f = YB + Γ · g1(YB) · g2(YB), (15)

ChB f = ChB

[
1 +

YB f

YB
· g3(YB)

]
, (16)
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where {YB, ChB} and {YB f , ChB f } denote the luminance and chrominance components
of the image before (B) and after (B f ) ATR. The self-calibrating weight Γ, introduced in
Section 3.5, Equation (24), ensures that the enhancement is proportional to the amount of
haze removed. If the input image is haze-free, no dehazing is performed, leading to Γ = 0
and no enhancement. Conversely, for hazy images, 0 < Γ ≤ 1 is enforced to proportionally
scale the enhancement according to the dehazing strength. Chrominance (Ch) is derived by
subsampling the blue-difference (Cb) and red-difference (Cr) chroma channels according
to the 4:2:2 ratio.

The luminance enhancement formula involves two components: a non-linear gain
g1(·) and a linear weight g2(·), as defined in Equations (17) and (18). The non-linear gain
is derived from the adaptive luminance point (ALP), which constrains the luminance range
to prevent over-enhancement. The user-defined exponent θ is used for performance tuning.
The linear weight is a linear function of the luminance YB, with its slope and intercept
determined by two parameters, m and b.

g1(YB) =
YB

221

[
255

(
1 − YB − ALP

255

)θ(255 − YB

255

)]2

, (17)

g2(YB) =
m

255
YB + b. (18)

The adaptive luminance point ALP is computed as:

ALP =


0.04 +

0.02
255

(L0.9 − L0.1) ȲB > 128

0.04 − 0.02
255

(L0.9 − L0.1) ȲB ≤ 128
, (19)

where ȲB is the average luminance and Lk is the luminance value corresponding to a
cumulative distribution function (CDF) such that CDF(Lk) = k, with 0 ≤ k ∈ R ≤ 1.

The chrominance expansion formula involves a piecewise linear function g3(·) of the
luminance YB, as defined in Equation (20). The thresholds Lhigh and Llow are predefined
luminance bounds. According to the Helmholtz–Kohlrausch effect [48], luminance enhance-
ment narrows the color gamut in chromaticity coordinates. To mitigate this effect, the ratio
YB f / YB is multiplied by g3(·) to counterbalance the narrowing of the color gamut. The
appearance of YB f / YB in Equation (16) enables the self-calibrating weight Γ to implicitly
affect chrominance expansion as well.

g3(YB) =


0.7 YB < Llow

0.7 − 0.26
YB − Llow

Lhigh − Llow
Llow ≤ YB ≤ Lhigh

0.44 YB > Lhigh

. (20)

Figure 5 illustrates the simplified data path of adaptive tone remapping. The color
space conversions are the same as described in Section 3.1, except that the blue-difference
and red-difference chroma components are combined into a single chroma channel using
the 4:2:2 subsampling scheme. The subsampling process is efficiently implemented using
multiplexers. The average luminance ȲB and the CDF are computed on a frame-wise basis,
leveraging the high temporal similarity between consecutive video frames. This eliminates
the need for frame buffers, thereby optimizing resource usage.
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Figure 5. Simplified data path of the adaptive tone remapping process. CDF is the abbreviation for
cumulative distribution function.

3.5. Haze Density Estimation and Haze-Aware Weighting

For achieving autonomous dehazing, estimating a haze density map from an arbi-
trary input image is a critical prerequisite. In the proposed system, a haziness degree
evaluator [45] is employed to compute the haze density map as follows:

ρI = 1 − t̂, (21)

where t̂ is obtained by optimizing the cost function O(t) in Equation (22). This cost function
is formulated using image features such as saturation S, brightness V, sharpness σ, and
the dark channel D, all of which are expressed as functions of the transmission map t.
The regularization parameter is denoted as λ. Optimization of O(t) aims to determine t̂
such that saturation, brightness, and sharpness are maximized, while the dark channel
is minimized.

O(t) =
S(t)V(t)σ(t)

D(t)
+

λ

t
. (22)

To maintain conciseness, interested readers are referred to [45] (Section 3.4 and
Appendix A) for a detailed explanation of the derivation of t̂. The formula for computing
the haze density map is given as follows:

ρI = ImΨ +
Imcv

λ
−

√
Imcv

λ

(
Imcv

λ
− 255 + ImΨ

)
, (23)

where ImΨ = min(x,y)∈Ψ

[
minc∈{R,G,B} Ic(x, y)

]
is the result of applying a minimum filter

to the minimum channel, Imc = maxc∈{R,G,B} Ic − minc∈{R,G,B} Ic is the difference between
the maximum and minimum color channels, and v is the local variance as defined in
Equation (5).

The self-calibrating weight Γ is defined as a piecewise function of the average haze
density ρ̄I, expressed as:

Γ =



0 ρ̄I ≤ ρ1(
ρ̄I − ρ1

ρ2 − ρ1

)n
ρ1 < ρ̄I ≤ ρ2(

Γu − 1
1 − ρ2

)
(ρ̄I − ρ2) + 1 ρ̄I > ρ2

, (24)

where ρ1 and ρ2 are two user-defined thresholds. For ρI ≤ ρ1, Γ = 0 is used to zero
the dehazing strength, allowing the input haze-free image to remain unchanged. For
ρ1 < ρ̄I ≤ ρ2, Γ increases exponentially, controlled by the exponent n (set to 0.1), allowing
for a gradual increase in dehazing strength from mild to moderate haze conditions. For
ρ̄I > ρ2, Γ varies linearly, capped by an empirically determined upper bound Γu = 1.2. The
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final transmission map is modified as t = exp(−βcΓd), enabling dynamic control of the
dehazing process.

To account for the spatial heterogeneity of haze, the input image is divided into
8 × 8 patches. The local haze density ρΩi for the i-th patch Ωi is computed as:

ρΩi = max

ρ̄I,
1

|Ωi| ∑
∀(x,y)∈Ωi

ρI(x, y)

, (25)

where |Ωi| represents the number of pixels in Ωi. Based on the local haze density, the local
blending weight αi is defined as a piecewise linear function, with thresholds ρ1 and ρ2

consistent with the definitions in Equation (24).

αi =


0 ρΩi < ρ1

ρ̄I − ρ1

ρ2 − ρ1
ρ1 ≤ ρΩi ≤ ρ2

1 ρΩi > ρ2

. (26)

Figure 6 demonstrates the impact of abrupt transitions in local haze densities on
blended results, causing blocky artifacts. On the left of Figure 6 is a hazy image superim-
posed by local haze densities. The pink rectangle masks a region with abrupt transitions
in haze densities: 0.1531 → 0 and 0.1122 → 0. These values were min–max normalized
for ease of interpretation. The image on the right is the blended result obtained using
8 × 8 local weights. It is observed that abrupt transitions cause blocky artifacts, as shown
by the pink rectangle in the blended result.

Input image superimposed by local haze density values

0.9306 0.9388 0.7204 0.5878 0.7816 0.0061 0.1265 1.0000

0.4143 0.2347 0.0000 0.0000 0.3429 0.3265 0.1367 0.3694

0.2041 0.0714 0.0000 0.0000 0.0000 0.0000 0.0510 0.2061

0.1204 0.0857 0.1531 0.0000 0.0000 0.0000 0.0000 0.2816

0.0633 0.0000 0.1122 0.0000 0.0000 0.0000 0.1531 0.2816

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1082 0.1735

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0224

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Blending result using local weights (8×8 patches)

Figure 6. Input image and the corresponding blended result using 8× 8 weights. Local haze densities
are min–max normalized for ease of interpretation.

To mitigate this problem, a 2 × 2 low-pass filter is applied to smooth transitions,
followed by 4× bilinear interpolation to upscale local haze densities from 8 × 8 to 29 × 29.
Figure 7 illustrates how this process significantly reduces blocky artifacts by ensuring
more gradual transitions between patches. Considering the same region as in Figure 6,
the 2 × 2 local haze densities turn into 5 × 5, demonstrating more gradual transitions
both horizontally and vertically. Using the interpolated results, blocky artifacts are now
effectively eliminated, allowing the proposed system to produce high-quality images.

Figure 8 illustrates the simplified data path for computing the self-calibrating weight
and local blending weights. To optimize performance, the 2 × 2 low-pass filter and
4× interpolation modules are implemented during the video blanking interval (VBI) using
a dual-port (DP) RAM for 8 × 8 local haze density values and a single-port (SP) RAM for
29 × 29 interpolated results. During the video active interval (VAI), the system computes
8 × 8 local haze densities, stores them in DP RAM, and retrieves interpolated results from
SP RAM, as illustrated in Figure 9. Executing the low-pass filter and 4× bilinear interpola-
tion during VBI ensures that the interpolated haze densities are available for the next frame;
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hence, the name VBI-accelerated of the proposed system. The detailed implementation of
the 2 × 2 low-pass filter is provided in Appendix B.

0.0830 0.0415

0.0939 0.0721

0.1531 0.0000

0.1122 0.0000

Local haze density

Eq. (24)
Low-pass filter

4× bilinear 

interpolation

0.0830 0.0726 0.0622 0.0519 0.0415

0.0857 0.0766 0.0674 0.0583 0.0491

0.0884 0.0805 0.0726 0.0647 0.0568

0.0912 0.0845 0.0778 0.0711 0.0644

0.0939 0.0884 0.0830 0.0775 0.0721

Blending

result

Input

image

𝜌𝐈

Interpolation module in Figure 1

Figure 7. Effect of interpolation on the blended result. Local haze densities are min–max normalized
for ease of interpretation.
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Figure 8. Simplified data path for computing the self-calibrating weight and local blending weights.
LPF and INT are abbreviations for low-pass filter and interpolation, respectively.

The 4× bilinear interpolation is implemented using two architectures: INTERP1, a
naive implementation of bilinear interpolation, and INTERP2, an optimized design leverag-
ing overlapping sliding windows. Details about these two architectures are provided in
Appendix C. Implementation on an XCZU7EV-2FFVC1156 MPSoC device [49], obtained
using Vivado 2023.1 [50], is summarized in Table 4. It demonstrates that INTERP2 achieves
higher efficiency, occupying fewer hardware resources and operating at higher frequencies.
Consequently, INTERP2 is adopted in the proposed system.

Table 4. Implementation results of the 4× interpolation module. INTERP1 refers to the formula-based
architecture, while INTERP2 denotes the proposed architecture that leverages overlapping sliding
windows. LUT stands for look-up table and the symbol # represents quantities.

Xilinx Vivado v2023.1

Device XCZU7EV-2FFVC1156-2-E

Design INTERP1 INTERP2

Slice Logic Utilization Available Used Utilization Used Utilization

Slice registers (#) 460,800 1944 0.42% 1506 0.33%
Slice LUTs (#) 230,400 1663 0.72% 1350 0.59%

Block RAMs (#) 312 0.5 0.16% 0.5 0.16%
Minimum period (ns) - 1.414 1.397

Maximum frequency (MHz) - 707.214 715.820
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Figure 9. Proposed implementation scheme of the 2 × 2 low-pass filter and 4× interpolation. DP
RAM and SP RAM refer to dual-port RAM and single-port RAM, respectively.

4. Evaluation
This section presents a comparative evaluation of the proposed autonomous de-

hazing system against six benchmark methods, abbreviated as DCP [5], CAP [7], De-
hazeNet [18], YOLY [21], MB-TaylorFormer [32], and FCDM (Frequency Compensated
Diffusion Model) [33]. The evaluation encompasses both qualitative and quantitative
analyses to assess dehazing effectiveness. Additionally, FPGA implementation results are
examined and compared with existing designs (Section 2) to demonstrate real-time process-
ing capabilities. Finally, the practical utility of the proposed system is validated through its
application in aerial object detection, highlighting its potential for real-world deployment.

Table 5 summarizes the parameters of the proposed system and their settings, which
are used in all subsequent experiments.

Table 5. Summary of the parameters of the proposed autonomous dehazing system. The self-
calibrating weight and local blending weight processes share the same values for ρ1 and ρ2.

Process Parameter Value Remark

Unsharp masking

v1 0.001

Scaling weight calculation in Equation (4)v2 0.010
ω1 2.5
ω2 1.0

ICAP-based dehazing
θ0 0.180069

Scene depth estimation in Equation (11)θ1 1.014740
θ2 −0.734965

Haziness degree evaluator λ −1 Regularization parameter in Equation (23)

Self-calibrating weight n 0.1 Self-calibrating calculation in Equation (24)
and ρ1 0.8811 and

Local blending weights ρ2 0.9344 local blending weight calculation in Equation (26)

Adaptive tone remapping

θ 1.5 / (ȲB − L0.1) g1(·) in Equation (17), θ depends on the input image
m 5 g2(·) in Equation (18)b 6

Llow 128 g3(·) in Equation (20)Lhigh 255

4.1. Qualitative Evaluation

Figure 10 illustrates the results of the proposed autonomous dehazing system and
six benchmark methods applied to five natural images. Two of these images are haze-free,
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while the remaining three are affected by mild, moderate, and dense haze, respectively. The
average haze density ρ̄I is compared against two thresholds, ρ1 = 0.8811 and ρ2 = 0.9344,
to determine the haze condition.

Input

image

FCDM

MB-Taylor

Former

YOLY

DehazeNet

CAP

DCP

Mildly hazy

ҧ𝜌𝐈 = 0.8974

Moderately hazy

ҧ𝜌𝐈 = 0.9259

Densely hazy

ҧ𝜌𝐈 = 0.9514

Haze-free

ҧ𝜌𝐈 = 0.6227

Failure

ҧ𝜌𝐈 = 0.8862

Proposed

Figure 10. Qualitative evaluation results of the proposed system and six benchmark methods on
haze-free, mildly hazy, moderately hazy, and densely hazy images. The average haze density ρ̄I was
compared against two thresholds, ρ1 = 0.8811 and ρ2 = 0.9344, to determine the haze condition.

In the first column, corresponding to a mildly hazy scenario, the over-dehazing limita-
tions of benchmark methods are evident, particularly for non-learning-based approaches
such as DCP and CAP. Significant color distortions are observed in the cloudy sky, aircraft,
and grass. Although learning-based methods—DehazeNet, YOLY, MB-TaylorFormer, and
FCDM—mitigate this issue to some extent, color changes in the grass and sky remain
noticeable. In contrast, the proposed system accurately categorizes the image as mildly
hazy and applies reduced dehazing strength, effectively preventing over-dehazing artifacts.

For the moderately hazy image in the second column, DCP, CAP, and DehazeNet con-
tinue to exhibit color distortion due to over-dehazing. Meanwhile, YOLY, MB-TaylorFormer,
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FCDM, and the proposed system achieve more favorable results, effectively removing haze
without introducing significant artifacts. In the dense haze scenario (third column), DCP,
CAP, DehazeNet, and FCDM demonstrate strong dehazing performance, whereas YOLY
and MB-TaylorFormer leave visible residual haze. The reduced performance of YOLY and
MB-TaylorFormer can be attributed to domain shift, where the input data differ from the
training set, impairing their effectiveness. FCDM addresses this issue through a sophis-
ticated data augmentation strategy, generating various haze levels and swapping haze
statistics in the low-frequency component between images. This approach enhances gener-
alizability and mitigates domain shift. In contrast, the proposed system employs a simpler
yet effective strategy, leveraging the self-calibrating weight for adaptive dehazing strength
and local blending weights to enhance textual details, yielding robust performance across
both moderate and dense haze conditions.

The fourth column displays a haze-free image where no dehazing should be applied.
However, benchmark methods, unable to discern the haze-free condition, perform unnec-
essary dehazing, resulting in color distortion in the sky. This issue is more pronounced
in non-learning-based methods. Notably, FCDM, the most recent learning-based method,
introduces minimal color changes and produces an output nearly identical to the input. The
proposed system correctly identifies the image as haze-free, setting the dehazing strength
to zero and preserving the original image without introducing artifacts.

In the fifth column, another haze-free image is presented. This image contains a
large sky region with a haze-like cloud veil, leading to a false positive in the haziness
degree evaluation, as discussed in [45], where the haze-free image is misclassified as hazy.
Consequently, the proposed system miscategorizes the image as mildly hazy, applying
dehazing and causing a slight loss of fine details in the tree twigs. This issue affects most
methods, except for MB-TaylorFormer, which produces the most visually satisfactory result
in this case.

Figure 11 demonstrates the performance of the proposed system on an aerial image
and three synthetic hazy variants generated using the process described in [12]. While dif-
ferences among the seven methods are visually discernible, determining the best approach
remains challenging, as none introduce significant artifacts. However, the proposed system
effectively removes haze while preserving color fidelity, whereas benchmark methods
introduce varying degrees of color alteration. Section 4.4 further evaluates the impact of
dehazing on YOLOv9’s performance in aerial object detection.

4.2. Quantitative Evaluation

To conduct a quantitative assessment, the tone-mapped image quality index (TMQI) [51]
and the feature similarity extended to color images (FSIMc) [52] are employed. TMQI and
FSIMc are full-reference image quality assessment metrics, ranging from zero to unity, where
higher values indicate better performance. Five public datasets—FRIDA2 [6], D-HAZY [53],
O-HAZE [54], I-HAZE [55], and Dense Haze [56]—are used to compute the average TMQI and
FSIMc values. A summary of these datasets is provided in Table 6, while the corresponding
average TMQI and FSIMc values are presented in Table 7.

Table 6. Summary of the five public datasets used in the quantitative evaluation.

Dataset Haze-Free (#) Hazy (#) Remark

FRIDA2 66 264 Road scene images generated by computer graphics
D-HAZY 1472 1472 Synthetic indoor images
O-HAZE 45 45 Real outdoor images (haze generator)
I-HAZE 30 30 Real indoor images (haze generator)

Dense Haze 50 50 Real indoor and outdoor images (haze generator)
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Figure 11. Qualitative evaluation results of the proposed system and six benchmark methods on
an aerial image under haze-free, mildly hazy, moderately hazy, and densely hazy conditions. The
average haze density ρ̄I was compared against two thresholds, ρ1 = 0.8811 and ρ2 = 0.9344, to
determine the haze condition.
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Table 7. Average TMQI and FSIMc values computed on five public datasets. The best and second-best
results are boldfaced and italicized, respectively. MB-TF is the abbreviation for MB-TaylorFormer.

Dataset
Method

DCP CAP DehazeNet YOLY MB-TF Proposed

TMQI ↑

FRIDA2 0.7291 0.7385 0.7366 0.7176 0.7631 0.7345
D-HAZY 0.8631 0.8206 0.7966 0.6817 0.7428 0.7861
O-HAZE 0.8403 0.8118 0.8413 0.6566 0.8732 0.9048
I-HAZE 0.7319 0.7512 0.7598 0.6936 0.8655 0.8319

Dense-Haze 0.6383 0.5955 0.5723 0.5107 0.7237 0.6120

Total 0.7357 0.7336 0.7312 0.6520 0.7761 0.7466

FSIMc ↑

FRIDA2 0.7746 0.7918 0.7963 0.7849 0.7158 0.8027
D-HAZY 0.9002 0.8880 0.8874 0.7383 0.7727 0.8772
O-HAZE 0.8423 0.7738 0.7865 0.6997 0.8420 0.8319
I-HAZE 0.8208 0.8252 0.8482 0.7564 0.8692 0.8726

Dense-Haze 0.6419 0.5773 0.5573 0.5763 0.7976 0.5869

Total 0.7746 0.7693 0.7725 0.7111 0.7544 0.7865

FCDM is excluded from the quantitative evaluation due to its implementation con-
straints. Unlike the proposed system and other benchmark methods, which process
variable-sized images, FCDN resizes all inputs to square dimensions, producing cor-
respondingly shaped outputs. This discrepancy impacts TMQI and FSIMc scores, so
quantitative results including FCDM are provided in Appendix D.

TMQI combines multiscale structural similarity with a naturalness measure, where
the latter is derived from the intensity statistics of 3000 natural scene images. As shown in
Table 7, the proposed system demonstrates strong performance on real-world outdoor and
indoor images, ranking first and second on the O-HAZE and I-HAZE datasets, respectively.
On the Dense-Haze dataset, the system ranks third, following MB-TaylorFormer and DCP.
MB-TaylorFormer, rather than removing haze directly, reconstructs a haze-free image
using features extracted from the input hazy image. This approach is particularly effective
for dense haze scenarios, although its high computational cost is a notable drawback.
DCP, well-known for its over-dehazing tendencies, performs favorably in dense haze
conditions but is less suitable in general contexts due to its tendency to produce unnatural
results. In contrast, the proposed system, with its self-calibrating capability, achieves robust
performance across varying haze conditions. However, its lower performance on Dense-
Haze stems from the inherent limitations of its dehazing process, which is based on the
ICAP method. Overall, the proposed system is ranked second in terms of TMQI.

FSIMc, the second metric, extends structural similarity to assess color images. Table 7
reveals an interesting trend: non-learning-based methods exhibit higher FSIMc values
compared to learning-based methods. This observation can be attributed to the following:
learning-based methods such as YOLY and MB-TaylorFormer are trained to generate haze-
free images. Due to the high computational and memory demands during training, these
methods are typically trained on resized images rather than the original full-resolution
images, which likely affects their performance under FSIMc evaluation. DehazeNet, another
learning-based method, performs better than YOLY and MB-TaylorFormer because it
estimates the transmission map rather than generating a complete haze-free image. The
proposed system performs well across most datasets, with the exception of Dense-Haze, for
reasons consistent with those identified in the TMQI evaluation. Nevertheless, it achieves
the highest overall ranking in terms of FSIMc.
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4.3. FPGA Implementation Result

The proposed autonomous dehazing system was implemented using Verilog HDL
(IEEE Standard 1364-2005) [57] at the register transfer level (RTL), leveraging the portability
and reusability offered by this design methodology. For example, the modified hybrid
median filter was directly reused from our previous work in [47]. Moreover, as the RTL de-
sign primarily models signal flow, it is particularly well-suited for FPGA implementations,
enabling efficient deployment using the simplified data paths outlined in Section 3.

Table 8 presents the resource utilization of the proposed system on the XCZU7EV-
2FFVC1156 MPSoC device, showing an occupation of 10.80%, 23.21%, and 18.11% for slice
registers, look-up tables (LUTs), and block RAMs, respectively. This level of utilization
is reasonable, given that dehazing algorithms typically serve as preprocessing steps in
high-level computer vision systems. The proposed system achieves a minimum clock
period of 2.49 ns, corresponding to a maximum frequency of 401.45 MHz, which translates
to a throughput of 401.45 Mpixels/s.

Given the maximum frequency fmax = 401.45 MHz, the processing speed in terms of
frames per second (fps) can be computed as:

FPS =
fmax

(H + BV)(W + BH)
, (27)

where {H, W} represent the image height and width and {BV , BH} denote the verti-
cal and horizontal blanking intervals, measured in pixels. For modern digital cam-
era systems, BV = 1 and BH = 1 can be assumed. Considering a DCI 4K resolution
(H = 2160 and W = 4096), it requires (2160 + 1)(4096 + 1) = 8, 853, 617 clock cycles to
process a single frame. Thus, the system achieves a processing speed of approximately
401.45 × 106 / 8, 853, 617 ≈ 45.34 fps, rendering it highly suitable for real-time computer
vision applications. Table 9 summarizes the processing speed of the system across various
video standards, ranging from Full HD to DCI 4K.

Table 8. Hardware implementation result of the proposed autonomous dehazing system.

Xilinx Vivado v2023.1

Device XCZU7EV-2FFVC1156-2-E

Slice Logic Utilization Available Used Utilization

Slice registers (#) 460,800 49,757 10.80%
Slice LUTs (#) 230,400 53,484 23.21%

Block RAMs (#) 312 56.5 18.11%
Minimum period (ns) 2.49

Maximum frequency (MHz) 401.45

Table 9. Maximum processing speeds in frames per second for different video standards.

Standard Resolution Required Clock Cycles (#) Processing Speed (fps)

Full HD 1920 × 1080 2,076,601 193.32
Quad HD 2560 × 1440 3,690,401 108.78

4K
UW4K 3840 × 1600 6,149,441 65.28

UHD TV 3840 × 2160 8,300,401 48.36
DCI 4K 4096 × 2160 8,853,617 45.34

For 8K UHD resolution (7680 × 4320), the proposed system achieves only 12.10 fps,
falling short of real-time processing requirements. However, as shown in Table 8, the
target FPGA can accommodate four instances of the proposed system. Figure 12 il-
lustrates two strategies for processing 8K UHD video. On the left, two instances
operate on 7680 × 2160 frame segments, achieving a maximum processing speed of
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24.19 fps, approaching real-time performance. On the right, four instances process
3840 × 2160 segments, increasing the speed to 48.37 fps, thereby meeting both NTSC and
PAL real-time requirements.

8K UHD 8K UHD

7680 7680

4
3
2
0

4
3
2
0

#1

#2

#1 #2

#4#3

FPS = 24.19 FPS = 48.37

Figure 12. Strategies for processing 8K UHD video.

The proposed system demonstrates a significant advantage in processing speed com-
pared to all real-time dehazing implementations reported in Table 3. In Table 10, it is com-
pared against three specific implementations: the DCP with fast airlight estimation (DCP-
FAE) [40], the direct implementation of DCP (DCP-DI) [38], and an earlier autonomous
dehazing system from our prior work [12]. The proposed system outperforms DCP-FAE
across all evaluation metrics, requiring fewer hardware resources while delivering signifi-
cantly faster processing speeds. A similar trend is observed when compared to DCP-DI,
despite the unavailability of complete implementation details for the latter. Furthermore,
as detailed in Section 4.1, DCP-based methods lack the autonomous dehazing capability, a
key feature of the proposed system.

Table 10. Comparison with other real-time dehazing implementations. NA stands for not available.

Hardware Utilization DCP-FAE [40] DCP-DI [38] Previous Work [12] Proposed System

Slice registers (#) 53,400 NA 53,216 49,757
Slice LUTs (#) 64,000 NA 49,799 53,484

DSPs (#) 42 NA 0 0
Memory (Mbits) 3.2 NA 1.4 2.1

Maximum frequency (MHz) 88.70 116.00 271.37 401.45
Maximum video resolution SVGA Quad HD DCI 4K DCI 4K

Autonomous dehazing Unequipped Unequipped Equipped Equipped

Finally, compared to our previous work, the proposed system exhibits minimal differ-
ences in logic utilization but requires additional memory resources due to the implementa-
tion of local image blending. However, as this feature operates during the vertical blanking
interval, it does not affect the overall processing speed. Notably, the proposed system
achieves a 1.48× improvement in processing speed compared to our prior implementation.

4.4. Aerial Object Detection Result

Aerial images in Figure 11 are provided to YOLOv9 [58] for object detection, with
results shown in Figure 13 and summarized in Table 11. Under haze-free conditions,
all six benchmark methods apply dehazing indiscriminately, unintentionally degrading
image quality and detection performance. As discussed in Section 4.2, YOLY and MB-
TaylorFormer generate haze-free images rather than performing explicit dehazing. While
effective for moderate and dense haze, this approach leads to performance degradation
in haze-free and mild haze scenarios, as evidenced by a sharp decrease in the number of
detected aircraft. FCDM, a diffusion-based dehazing model, performs slightly better than
MB-TaylorFormer and YOLY, as it avoids false detections. Meanwhile, DCP, CAP, and
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DehazeNet cause some reduction in detection performance, though less severe than that of
YOLY and MB-TaylorFormer. In contrast, the proposed system correctly identifies haze-free
inputs and bypasses dehazing, preserving detection performance.

Input

image

FCDM

MB-Taylor

Former

YOLY

DehazeNet

CAP

DCP

Mildly hazy

ҧ𝜌𝐈 = 0.9012

Moderately hazy

ҧ𝜌𝐈 = 0.9268

Densely hazy

ҧ𝜌𝐈 = 0.9583

Haze-free

ҧ𝜌𝐈 = 0.8739

Proposed

Figure 13. Aerial object detection results of YOLOv9 on an aerial image under haze-free, mildly hazy,
moderately hazy, and densely hazy conditions. The average haze density ρ̄I was compared against
two thresholds, ρ1 = 0.8811 and ρ2 = 0.9344, to determine the haze condition. Yellow, blue, and
orange labels represent aircrafts, birds, and knives, respectively.
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Table 11. Summary of YOLOv9 detection results on an aerial image under haze-free, mildly hazy,
moderately hazy, and densely hazy conditions.

Method
Case Haze-Free Thin Moderate Dense

Aircraft (#) Failure (#) Aircraft (#) Failure (#) Aircraft (#) Failure (#) Aircraft (#) Failure (#)
Input 5 2 5 2 4 1 2 0
DCP 4 1 5 3 4 1 2 1
CAP 3 3 3 3 5 2 2 0

DehazeNet 4 2 4 3 6 2 2 0
YOLY 0 1 0 1 3 1 0 0

MB-TaylorFormer 1 3 1 2 4 0 4 0
FCDM 1 0 2 1 2 0 0 0

Proposed 5 2 6 3 7 0 2 2

Under mild haze, a similar trend is observed. Most methods reduce detection perfor-
mance, whereas DCP maintains the number of detected aircraft, and the proposed system
results in one additional aircraft detected. In moderate haze, YOLY and MB-TaylorFormer
improve performance as expected. While YOLY reduces the number of detected aircraft by
one, MB-TaylorFormer preserves YOLOv9’s original detection performance. FCMD does
not benefit YOLOv9 and leads to the disappearance of two detected aircraft. In contrast,
CAP and DehazeNet enhance detection rates by 25% and 50%, respectively. The proposed
system achieves a 75% improvement, while also eliminating false detections.

Under dense haze, the proposed system, though not the best-performing method, still
preserves detection performance by maintaining two detected aircraft. In this scenario,
MB-TaylorFormer achieves the highest improvement at 100%. Interestingly, despite its
strong qualitative and quantitative performance, FCDM results in zero detections. Across
all haze conditions, YOLOv9 does not benefit from images preprocessed by this method.
Overall, the proposed system outperforms other approaches in preprocessing input images
for YOLOv9-based object detection.

5. Conclusions
This paper presents a real-time FPGA implementation of an autonomous dehazing

method. A haziness degree evaluator quantifies the haze density of the input image,
classifying it into four categories: haze-free, mildly hazy, moderately hazy, or densely hazy.
Based on this classification, a self-calibrating weight is derived, enabling the proposed
system to adaptively adjust its dehazing strength for different haze conditions. Additionally,
local haze density values are used to compute local blending weights, enhancing the local
textures of the final result. Unlike previous approaches, which often omit this feature due to
implementation challenges during the video active interval, this work introduces a method
to perform local blending during the video blanking interval. This ensures high processing
speed without impacting system throughput.

Qualitative and quantitative evaluations demonstrate the effectiveness of the pro-
posed system in dehazing, while FPGA implementation results validate its efficient
hardware utilization and high throughput. The system achieves a processing rate of
45.34 frames per second for DCI 4K video. Furthermore, experiments on aerial images un-
der various haze conditions highlight its suitability for integration into high-level computer
vision applications, such as YOLOv9 for object detection.

Despite its advantages, the proposed system inherits a limitation from the use of
ICAP for dehazing—reduced performance in dense or heterogeneous haze conditions.
This issue stems not only from the simplicity of the linear equation used for scene depth
estimation, but also from the constraints of the atmospheric scattering model. Future
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research may explore more flexible or advanced physical models to further enhancing
dehazing performance.
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Appendix A
Two-dimensional filters are implemented using line memories, registers, and a dedi-

cated logic circuit, customized to the specific filter type, as illustrated in Figure A1. Line
memories are mapped to block RAMs on the FPGA, with each memory delaying the input
stream by one line, where the line length corresponds to the width of the image. In other
words, line memories provide vertical delay to the input stream. Conversely, registers are
used to delay the input stream horizontally, with each register introducing a one-pixel
delay. For example, the 3 × 3 filter shown in Figure A1 comprises two line memories and
six registers, enabling access to nine pixels within the filter kernel: z1, z2, . . . , z9.
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Figure A1. Simplified data path of 3 × 3 two-dimensional filters. REG is an abbreviation for register.

These pixels are subsequently processed by a dedicated logic circuit, designed ac-
cording to the filter type. For example, Figure A1 illustrates two specific implementations:
the moving average filter (kernel U in Equation (6)) and the Laplacian filter (kernel ∇2 in
Equation (8)). For the modified hybrid median filter described in Section 3.2, the filtering
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operation module is replaced with an optimized merging sorting network, as detailed
in [47].

Appendix B
The filter architecture presented in Appendix A operates during the video active

interval, whereas the 2× 2 low-pass filter for smoothing local haze density values functions
during the video blanking interval. This requires a separate architecture, depicted in
Figure A2. The 8 × 8 local haze density map ρΩ, computed using Equation (25), is stored
in a dual-port RAM. This RAM features two address ports and two data ports, enabling
efficient implementation of the 2 × 2 sliding window.

Dual-port

RAM

0

1

𝜌Ω

addr1

addr2

REG

REG

+

+ +

+

0

1

REG
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… …
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𝑟2 =
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RDOUT2

Figure A2. Simplified data path of the 2 × 2 low-pass filter.

The first address port, addr1, is driven by a counter incrementing from 0 to 63, fa-
cilitating the retrieval of z1 and z3 within the sliding window. The second address port,
addr2, is controlled by a counter that increases from 8 to 63, followed by wrapping back
to 56 to 63, ensuring the retrieval of z2 and z4. Boundary padding is not applied in this
implementation. Instead, boundary values are averaged directly to generate the filtering
results, as illustrated by a multiplexer controlled by the comparison Xcnt == 7, where Xcnt

represents a horizontal counter.
The data written to the dual-port RAM are selected through a multiplexer controlled by

the signal LPFdone. When the computation of the filtering result is complete (LPFdone = 1),
the multiplier routes the filtering result to the write port of the dual-port RAM. Conversely,
when LPFdone = 0, the multiplier routes the local haze density values to the write port,
allowing the dual-port RAM to store new 8 × 8 local haze density values.

Appendix C
Figure A3 illustrates two simplified data paths for implementing 4× bilinear inter-

polation. The first data path, shown in Figure A3a and denoted as INTERP1, is derived
directly from the interpolation formulas. Local haze density values processed by the
low-pass filter are stored in a dual-port RAM, from which they are read to perform the
interpolation. The interpolated results are subsequently stored in a single-port RAM, to
be read later for computing the self-calibrating weight and local blending weights. How-
ever, this data path requires a substantial number of adders and multiplexers, increasing
implementation complexity.

The second data path, depicted in Figure A3b and referred to as INTERP2, is designed
to exploit the overlap when sliding the window. Let Xcnt and Ycnt represent the horizontal
and vertical counters, respectively, both ranging from 0 to 7. Three cases are considered
when interpolating the 8 × 8 local haze density map:

• Case 1: (Xcnt < 7) AND (Ycnt < 7)
For this case, instead of computing all values within the 5 × 5 interpolated patch, it
suffices to compute only the upper-left 4 × 4 patch. The last column of the 5 × 5 patch
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is computed when the 2 × 2 window slides one position to the right. Similarly, the last
row is computed when the 2 × 2 window slides one position downward.

• Case 2: (Xcnt == 7) AND (Xcnt == 7)
When the window is at the last position, that is, the 63rd position in the 8 × 8 local
haze density map, no computation is required as the interpolated result is identical to
the input value.

• Case 3: otherwise
For this case, when the window reaches the rightmost position, it is sufficient to
compute the first four values of the last column of the 5 × 5 interpolated patch.
Similarly, when the window is at the bottommost position, only the first four values
of the last row of the 5 × 5 interpolated patch need to be computed.

In the proposed INTERP2 data path, four multiplexers are employed to select the
appropriate weight (1, 2, 3, 4, 6, 8, 9, 12, or 16) for implementing the interpolation formulas.
This design significantly reduces the number of required adders compared to the INTERP1

data path shown in Figure A3a, leading to a more efficient hardware implementation.

𝑨
3𝐴 + 𝐵

4

𝐴 + 𝐵

2

𝐴 + 3𝐵

4
𝑩

3𝐴 + 𝐶

4

9𝐴 + 3𝐵 + 3𝐶 + 𝐷

16

3𝐴 + 3𝐵 + 𝐶 + 𝐷

8

3𝐴 + 9𝐵 + 𝐶 + 3𝐷

16

3𝐵 + 𝐷

4

𝐴 + 𝐶

2

3𝐴 + 𝐵 + 3𝐶 + 𝐷

8

𝐴 + 𝐵 + 𝐶 + 𝐷

4

𝐴 + 3𝐵 + 𝐶 + 3𝐷

8

𝐵 +𝐷

2

𝐴 + 3𝐶

4

3𝐴 + 𝐵 + 9𝐶 + 3𝐷

16

𝐴 + 𝐵 + 3𝐶 + 3𝐷

8

𝐴 + 3𝐵 + 3𝐶 + 9𝐷

16

𝐵 + 3𝐷

4

𝑪
3𝐶 + 𝐷

4

𝐶 + 𝐷

2

𝐶 + 3𝐷

4
𝑫

𝑨 𝑩

𝑪 𝑫

Dual-port

RAM

Single-port

RAM

INTERP1

Read Write

(a)

Dual-port

RAM

INTERP2

Read

×

+

×

×

×

+

+
Single-port

RAM

Write

Dout1

Dout2

Dout1

Dout2

Dout1

Dout2

CTL

M
U
X

1
2
3
4

16

M
U
X

M
U
X

M
U
X

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

12
9
8
6

1
2
3
4

16
12
9
8
6

1
2
3
4

16
12
9
8
6

1
2
3
4

16
12
9
8
6

(b)

Figure A3. Simplified data paths of 4× bilinear interpolation. (a) Formula-based data path.
(b) Proposed data path leveraging the overlap when sliding the window.

Appendix D
Table A1 presents the average TMQI and FSIMc scores, including FCDM [33]. It should

be noted that FCDM resizes all input images to square dimensions and produces corre-
spondingly shaped outputs, unlike the proposed system and other benchmark methods,
which can process variable-sized images. To compute TMQI and FSIMc scores for FCDM,
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ground-truth images are resized to match its output dimensions. This resizing affects the
final scores, making direct comparisons with other methods challenging. Therefore, these
results are provided for reference only.

Table A1. Average TMQI and FSIMc values computed on five public datasets. The best and second-
best results are boldfaced and italicized, respectively. MB-TF is the abbreviation for MB-TaylorFormer.

Dataset
Method DCP CAP DehazeNet YOLY MB-TF FCDM Proposed

TMQI ↑

FRIDA2 0.7291 0.7385 0.7366 0.7176 0.7631 0.7907 0.7345
D-HAZY 0.8631 0.8206 0.7966 0.6817 0.7428 0.8447 0.7861
O-HAZE 0.8403 0.8118 0.8413 0.6566 0.8732 0.9154 0.9048
I-HAZE 0.7319 0.7512 0.7598 0.6936 0.8655 0.8191 0.8319

Dense-Haze 0.6383 0.5955 0.5723 0.5107 0.7237 0.6589 0.6120

Total 0.7357 0.7336 0.7312 0.6520 0.7761 0.7918 0.7466

FSIMc ↑

FRIDA2 0.7746 0.7918 0.7963 0.7849 0.7158 0.8230 0.8027
D-HAZY 0.9002 0.8880 0.8874 0.7383 0.7727 0.8883 0.8772
O-HAZE 0.8423 0.7738 0.7865 0.6997 0.8420 0.8865 0.8319
I-HAZE 0.8208 0.8252 0.8482 0.7564 0.8692 0.8974 0.8726

Dense-Haze 0.6419 0.5773 0.5573 0.5763 0.7976 0.7056 0.5869

Total 0.7746 0.7693 0.7725 0.7111 0.7544 0.8233 0.7865
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