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Abstract: Pattern recognition applications involve extensive arithmetic operations, includ-
ing additions, multiplications, and divisions. When implemented on resource-constrained
edge devices, these operations demand dedicated hardware, with division being the most
complex. Conventional hardware dividers, however, incur substantial overhead in terms
of resource consumption and latency. To address these limitations, we employ binary loga-
rithms with regional error correction to approximate division operations. By leveraging
approximation errors at boundary regions to formulate logarithm and antilogarithm offsets,
our approach effectively reduces hardware complexity while minimizing the inherent
errors of binary logarithm-based division. Additionally, we propose a six-stage pipelined
hardware architecture, synthesized and validated on a Zynq UltraScale+ FPGA platform.
The implementation results demonstrate that the proposed divider outperforms conven-
tional division methods in terms of resource utilization and power savings. Furthermore,
its application in image dehazing and object detection highlights its potential for real-time,
high-performance computing systems.

Keywords: high-precision divider; binary logarithm; regional error correction

1. Introduction
Deep neural networks (DNNs) have become fundamental in pattern recognition appli-

cations due to their ability to model complex data distributions and achieve state-of-the-art
performance in tasks such as image classification, speech recognition, and natural language
processing [1–3]. By leveraging hierarchical feature extraction and deep architectures,
DNNs effectively capture intricate patterns and relationships within data. However, this
high accuracy comes at the cost of substantial computational complexity. The large number
of parameters, layers, and operations required for training and inference demands con-
siderable computational resources, often relying on high-performance hardware such as
GPUs and TPUs. Among these operations, multiplication and division play a critical role
in matrix computations and activation functions, making their efficient execution essential
for achieving optimal performance. This necessity highlights the importance of hardware
accelerators designed to optimize these operations, particularly for resource-constrained
platforms such as mobile devices and embedded systems, where power efficiency is a
key concern.
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The computational demands of multiplication and division vary significantly across
hardware architectures. While multiplication is relatively efficient due to specialized hardware
units in both CPUs and GPUs, division remains a computationally expensive operation. Un-
like multiplication, division lacks dedicated hardware support in most processing units [4,5]
and typically relies on iterative approximation methods such as Newton–Raphson or Gold-
schmidt iterations [6]. As a result, division operations are often emulated using a combination
of multiplications, shifts, and additions, leading to increased latency and power consumption.
On GPUs, where parallelism is optimized for massively concurrent computations, the absence
of dedicated division units further exacerbates performance bottlenecks in applications re-
quiring frequent division operations, such as deep learning and numerical simulations. This
inefficiency underscores the need for optimized division algorithms and hardware accelerators
to enhance performance and energy efficiency in such platforms.

Binary logarithm-based division offers a promising alternative by transforming di-
vision into subtraction through logarithmic and exponential relationships, significantly
reducing computational complexity. While early approaches, such as Mitchell’s algo-
rithm [7], introduce approximation errors of around 12.5%, advancements in error correc-
tion techniques have demonstrated the potential to reduce this error to below 1%, making
logarithm-based division a viable alternative for many applications. This method is par-
ticularly beneficial in hardware-constrained environments, where traditional division is
costly in terms of latency and power consumption. By refining approximation techniques
and integrating error correction mechanisms, binary logarithm-based division can pro-
vide a balance between computational efficiency and precision, making it suitable for
performance-critical and energy-efficient systems.

In this work, we propose an efficient binary logarithm-based division that enhances
computational accuracy while maintaining hardware efficiency. To address the inherent
approximation errors, we introduce a regional error correction mechanism that adjusts
results based on input-specific characteristics. This refinement significantly improves the
accuracy of division while preserving its computational advantages. Additionally, we
present a six-stage pipelined hardware architecture that was synthesized and validated
on a Zynq UltraScale+ FPGA platform. We further demonstrate the effectiveness of
the proposed divider in image dehazing and object detection applications, achieving
substantial reductions in hardware utilization and power consumption while maintaining
high performance.

2. Related Work
2.1. Digit Recurrence Division Methods

Digit recurrence division is a widely used algorithm, particularly suited for imple-
mentation on resource-constrained edge devices. It follows the paper-and-pencil division
method, where the dividend is processed digit-by-digit (or bit-by-bit) from left to right,
producing the corresponding quotient digit (or bit). Mathematically, division can be ex-
pressed as follows:

Dividend = (Quotient × Divisor) + Remainder, (1)

where 0 ≤ Remainder ≤ Divisor.
The implementation of digit recurrence division involves addition, shifting, and

multiplication, making it well-suited for commercial applications. The common types of
dividers based on this algorithm include restoring, non-restoring [8], and SRT [9] (named
after its inventors).
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2.1.1. Restoring Division

Let N1, N2, Q, and P represent the dividend, divisor, quotient, and remainder, respec-
tively. Assume all numbers are binary, with Q having a wordlength of w. Each quotient
bit is denoted as qi, where i = w − 1, w − 2, ..., 1, 0. The partial remainder corresponding to
qi is denoted as P(i). The restoring division process begins by initializing P(w) = N1 and
determining qw−1 using the following:

P(w − 1) = P(w)− qw−1 · N2 · 2w−1. (2)

If P(w − 1) ≥ 0, then qw−1 = 1; otherwise, qw−1 = 0 and N2 · 2w−1 is added back to
restore the remainder. This restoration step ensures P(w − 1) ≥ 0 before proceeding to the
next quotient bit qw−2. The general recurrence relation is as follows:

P(i) = P(i + 1)− qi · N2 · 2i. (3)

Subtraction continues until the partial remainder becomes negative, requiring restora-
tion before computing the next quotient bit. Algorithm 1 summarizes the restoring division
approach, while two hardware architectures (serial and pipelined) are presented in [10].

Algorithm 1 Restoring Division

Input: Dividend N1 and divisor N2

Output: Quotient Q and remainder P
Begin

1: P = N1, N2 = N2 · 2w

2: for i = w − 1 → 0 do
3: P = 2P − N2

4: if P ≥ 0 then
5: qi = 1
6: else
7: qi = 0
8: P = P + N2

9: end if
10: end for
End

2.1.2. Non-Restoring Division

Restoring division may require up to 2w clock cycles to compute all quotient bits: w
cycles for subtractions and up to w additional cycles for restorations. The non-restoring
division method eliminates the need for restoration by performing a single decision and
addition (or subtraction) per quotient bit, as summarized in Algorithm 2.

This method produces a quotient and remainder in a non-standard form, requiring an
additional conversion step. Xilinx, the leading FPGA manufacturer, offers two versions
of non-restoring dividers: Radix-2 and High-Radix [11]. The Radix-2 divider is recom-
mended for integer operands with wordlengths below 16 bits, while the High-Radix divider
incorporates prescaling, making it suitable for operands exceeding 16 bits.
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Algorithm 2 Non-Restoring Division

Input: Dividend N1 and divisor N2

Output: Quotient Q and remainder P
Begin

1: P = N1, N2 = N2 · 2w

2: for i = w − 1 → 0 do
3: if P ≥ 0 then
4: qi = 1
5: P = 2P − N2

6: else
7: qi = 0
8: P = 2P + N2

9: end if
10: end for
11: Q = Q − Q̄
12: if P < 0 then
13: Q = Q − 1
14: P = P + N2

15: end if
End

2.1.3. SRT Division

Using the same notation as before, let r be the radix, typically chosen as a power of
two. The SRT division method follows the following recurrence:

rP(w) = N1, (4)

P(i + 1) = rP(i)− qi+1N2. (5)

At each iteration, one quotient digit is determined using the following selection function:

qi+1 = SEL(rP(i), N2). (6)

The quotient digit is chosen such that the next partial remainder satisfies |P(i + 1)| < N2.
The complexity of SEL(·) depends on the radix, redundancy, and wordlength of divisor
and remainder estimates. Interested readers are referred to [12] for a detailed analysis.
Each iteration comprises three steps:

• Selecting the next quotient digit qi+1.
• Computing the product qi+1N2.
• Updating the remainder: P(i + 1) = rP(i)− qi+1N2.

2.2. Functional Iteration Division Methods

Unlike digit recurrence methods, which compute one quotient digit per iteration,
functional iteration methods estimate the quotient directly, allowing multiple digits to
be computed per iteration. This approach relies on multiplication instead of subtraction,
reducing latency at the cost of precision.

2.2.1. Newton–Raphson Division

This method [13] estimates the divisor’s reciprocal and multiplies it by the dividend:

• Computing an initial estimate X0 of 1 / N2.
• Refining the estimate iteratively: X1, X2, ..., X f .
• Computing the quotient: Q = N1X f .
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In order to refine the estimate iteratively, it is essential to find a function g(X) that
has a zero at X = 1 / N2. One of such function is g(X) = (1 / X) − N2, for which the
Newton–Raphson iteration can be applied:

Xi+1 = Xi −
g(Xi)

g′(Xi)
= Xi(2 − N2Xi). (7)

Despite initial slow convergence, the method exhibits quadratic convergence, approx-
imately doubling the number of correct digits in each iteration. Xilinx implements this
method in its LutMultA divider [11].

2.2.2. Goldschmidt Division

Goldschmidt division [14] iteratively multiplies both the dividend and divisor by a
common factor Fi, expressed as follows:

Q =
N1

N2

F0

F0

F1

F1
...

Ff

Ff
, (8)

where the factor is chosen to drive N2 toward 1, thereby transforming N1 into the final
quotient. Unlike Newton–Raphson, this method allows parallel multiplication, leading to
its adoption in AMD Athlon processors [15].

2.3. Logarithm-Based Division Methods

Figure 1 presents a typical block diagram for division using binary logarithms, where
the red-dashed blocks correspond to logarithm and antilogarithm computations. These
computations introduce errors into the quotient, with the primary source of error stemming
from the inverse relationship between the two operations.

Dividend

Divisor

Quotient

Logarithm

calculation

Logarithm

calculation

Subtraction

a – b

Antilogarithm

calculation

a

b

Figure 1. Block diagram of binary logarithm-based division. The red-dashed blocks require approxi-
mation techniques that introduce errors into the quotient.

For a given binary number N represented as follows:

N = nk . . . n3n2n1n0.n−1n−2 . . . nj =
k

∑
i=j

2ini, (9)

where nk and nj represent the most significant and least significant bits, respectively. Each
ni is either 0 or 1. Without loss of generality, we assume nk = 1, allowing N to be rewritten
as follows:

N = 2k

(
1 +

k−1

∑
i=j

2i−kni

)
= 2k(1 + x), (10)

where x = ∑k−1
i=j 2i−kni is the fractional part, constrained by 0 ≤ x < 1. The binary

logarithm of N can then be expressed as log2(N) = k + log2(1 + x). Thus, computing
log2(N) involves the following:

• Determining the index k of the most significant nonzero bit nK.
• Computing log2(1 + x), where x represents the fractional component of N.
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Approximating log2(1 + x) is computationally simpler than directly approximating
log2(N). Common methods include the look-up table (LUT) approach [16,17] and Taylor
series expansion [18]. The LUT method precomputes logarithm values and stores them
for quick retrieval, while the Taylor series method approximates the logarithm through an
infinite sum, truncated at a desired accuracy level. However, both approaches exhibit a
trade-off between precision and computational complexity, making them less suitable for
high-accuracy applications.

2.3.1. Mitchell’s Algorithm

Mitchell’s algorithm [7] simplifies logarithm computation by approximating log2(1 + x)
as a linear function log2(1+ x) ≈ x. This leads to an approximate logarithm log2(N′) = k+ x,
introducing an approximation error defined as R = log2(1 + x)− x, which lies within the
range [0, 0.08639]. This error propagates into division operations using binary logarithms.

For two numbers N1 and N2, the quotient in logarithmic form is as follows:

log2(Q) = log2(N1)− log2(N2) (11)

= k1 + log2(1 + x1)− k2 − log2(1 + x2) (12)

⇒ Q =
2k1+k2(1 + x1)

1 + x2
. (13)

Applying Mitchell’s approximation results:

log2(Q
′) = log2(N′

1)− log2(N′
2) (14)

= k1 + x1 − k2 − x2 (15)

=

{
(k1 − k2) + (x1 − x2) x1 − x2 ≥ 0

(k1 − k2 − 1) + (1 + x1 − x2) x1 − x2 < 0
(16)

⇒ Q′ =

{
2k1−k2(1 + x1 − x2) x1 − x2 ≥ 0

2k1−k2−1(2 + x1 − x2) x1 − x2 < 0
, (17)

and the resulting division error Ed is as follows:

Ed =
Q′ − Q

Q
=


(1 + x1 − x2)(1 + x2)

1 + x1
− 1 x1 − x2 ≥ 0

(2 + x1 − x2)(1 + x2)

2(1 + x1)
− 1 x1 − x2 < 0

. (18)

The error analysis is divided into two cases.
Case 1: x1 − x2 ≥ 0. For this case, the error is rearranged as follows:

Ed(x1 − x2 ≥ 0) =
(1 + x1 − x2)(1 + x2)

1 + x1
− 1 =

x2(x1 − x2)

1 + x1
. (19)

Given that 0 ≤ x1 < 1 and 0 ≤ x2 < 1, the maximal error occurs when x1 = 1. Substituting
x1 = 1 into Equation (19) and differentiating with respect to x2, we obtain the following:

Ed(x1 − x2 ≥ 0) =
x2(1 − x2)

2
(20)

∂Ed(x1 − x2 ≥ 0)
∂x2

= 1 − 2x2. (21)

The derivative equals zero when x2 = 1/2. Thus, the maximum error is Ed = 1/8 = 12.5%
when x1 = 1 and x2 = 1/2. The minimum error occurs when x1 = x2 or x2 = 0, resulting
in Ed = 0.
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Case 2: x1 − x2 < 0. For this case, the error is rearranged as follows:

Ed(x1 − x2 < 0) =
(2 + x1 − x2)(1 + x2)

2(1 + x1)
− 1 =

(x2 − x1)(1 − x2)

2(1 + x1)
. (22)

Here, the maximal error occurs when x1 = 0. Substituting x1 = 0 into Equation (22) and
differentiating with respect to x2, we obtain the following:

Ed(x1 − x2 < 0) =
x2(1 − x2)

2
(23)

∂Ed(x1 − x2 < 0)
∂x2

= 1 − 2x2. (24)

The derivative is zero when x2 = 1/2. Thus, the maximum error is also Ed = 1/8 = 12.5%
when x1 = 0 and x2 = 1/2. The minimum error is Ed = 0 when x1 = x2 or x2 = 1.

Figure 2 illustrates the two types of errors introduced by Mitchell’s algorithm. The
first error, shown in Figure 2a, arises from the approximation log2(1 + x) ≈ x. The second
error, demonstrated in Figure 2b, results from applying this approximation to division
operations. Specifically, Figure 2b depicts the distribution of division errors, aligning with
the aforementioned analysis. The error ranges from a minimum of 0 to a maximum of
0.125. Clearly, improving the approximation in Figure 2a directly reduces the division error
shown in Figure 2b, which serves as the primary focus of the subsequent section.

0 1
x

0

1

lo
g
(1

+
x

)

Mitchell

Groundtruth

Error

(a)

−0.125 0 0.125
Division error

0

20
F

re
q
u

en
cy

(b)

Figure 2. Illustration of errors introduced by Mitchell’s algorithm. (a) Error resulting from the ap-
proximation log2(1 + x) ≈ x. (b) Distribution of division errors when applying Mitchell’s algorithm.

2.3.2. Discontinuous Piecewise Linear Approximation

To enhance accuracy, Ha and Lee [19] proposed a piecewise linear approximation for
log2(1 + x) instead of using a single straight-line approximation over the entire interval
0 ≤ x < 1. They partitioned the range into a predefined number of unequally spaced re-
gions and applied linear approximations within each region. Specifically, each region was
further divided into k sub-regions, with a separate straight-line approximation for log2(1+ x)
in each sub-region. To facilitate hardware implementation, all k lines within a given region
shared the same slope. As an example, Ha and Lee [19] used two regions (0 ≤ x < 0.4142
and 0.4142 ≤ x < 1), each containing three sub-regions (k = 3), approximating log2(1 + x)
as follows:

log2(1 + x) ≈


1.2071x + 0.0144 0.0796 ≤ x < 0.3187

1.2071x + 0.0072 0 ≤ x < 0.0796 or 0.3187 ≤ x < 0.4142

0.8536x + 0.1609 0.5268 ≤ x < 0.8649

0.8536x + 0.1537 0.4142 ≤ x < 0.5268 or 0.8649 ≤ x < 1

. (25)
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The primary limitation of this method is its manual design and optimization for
hardware implementation. No systematic methodology was proposed for extending the
approach to more general cases.

2.3.3. Non-Uniform Multi-Region Constant Adder Correction

Kuo [20] introduced another approach to reduce approximation error by dividing the
range into a predefined number of equally spaced regions. Within each region, a constant
was added to the straight-line approximation used in Mitchell’s algorithm, effectively
creating parallel lines that resulted in smaller approximation errors. To further optimize
the method, neighbouring regions with identical constant values were merged, forming a
non-uniform multi-region constant adder correction scheme.

However, like Ha and Lee’s approach [19], Kuo’s method also lacks a systematic
procedure for deriving the approximation formula. As an example, Kuo [20] divided the
range into nine regions and approximated log2(1 + x) as follows:

log2(1 + x) ≈



x 0 ≤ x < 0.0625

x + 0.0234375 0.0625 ≤ x < 0.125

x + 0.0390625 0.125 ≤ x < 0.1875

x + 0.046875 0.1875 ≤ x < 0.25

x + 0.0625 0.25 ≤ x < 0.6875

x + 0.04296875 0.6875 ≤ x < 0.8125

x + 0.03125 0.8125 ≤ x < 0.875

x + 0.015625 0.875 ≤ x < 0.9375

x 0.9375 ≤ x < 1

. (26)

Figure 3 compares the approximation lines used in Mitchell’s [7], Ha and Lee’s [19],
and Kuo’s [20] methods, with the corresponding approximation errors shown in Figure 3b.
It is evident that Ha and Lee’s [19] method and Kuo’s [20] method significantly reduce
approximation errors compared to Mitchell’s algorithm. Among these, Ha and Lee’s [19]
approach exhibits the best performance, closely approximating the log2(1 + x) curve.

0 1
x

0

1

lo
g

2
(1

+
x

)

Mitchell

Kuo

Ha and Lee

Groundtruth

(a)

0 1
x

−0.02

0

0.08

E
rr

or

Mitchell

Kuo

Ha and Lee

(b)

Figure 3. Comparison of methods improving upon Mitchell’s algorithm. (a) Approximation lines used
in each method, with the region 0.8 ≤ x ≤ 0.9 enlarged for better visualization. (b) Corresponding
approximation errors.



Electronics 2025, 14, 1066 9 of 18

3. Proposed Method
We develop the proposed method by adopting a similar approach to that of Kuo [20],

partitioning the fraction into equally spaced regions and determining an offset for each
region to minimize the approximation error. Furthermore, we present a systematic method-
ology for extending the proposed method to general cases.

Let N be a number whose binary logarithm, as computed by Mitchell’s algorithm, is
given by log2(N′) = k + x. The associated error is as follows:

R(x) = log2(1 + x)− x. (27)

If R(x) is added to log2(N′), the exact logarithm is obtained as log2(N) = k+ log2(1+ x).
Let z denote a point within the fractional range. If R(z) could be computed for every possible
z, the exact logarithm could be determined. However, this approach is impractical due to the
limited representation capabilities of computer systems, where numbers must be represented
with a fixed number of bits.

To address this issue, we partition the fraction into M equally spaced regions, with
M chosen as a power of two to simplify hardware implementation. The i-th region is
defined as follows:

Si =

{
x | i − 1

M
≤ x <

i
M

}
, (28)

where i = 1, 2, ..., M. Based on Mitchell’s algorithm, we approximate log2(1 + x) as follows:

log2(1 + x) ≈ x + ∆(i), (29)

where the offset ∆(i) is specific to Si. Several methods can be used to define this offset. The
simplest approach is to use the error at the region boundary. For example, defining the
offset using the right-end boundary error yields the following:

∆right(i) = R
(

i
M

)
= log

(
1 +

i
M

)
− i

M
. (30)

This ensures that the approximation error at the right end is zero, but the error increases
toward the left end. Alternatively, the offset can be defined using the error at the central
point of the region:

∆center(i) = R
(

2i − 1
2M

)
= log

(
1 +

2i − 1
2M

)
− 2i − 1

2M
. (31)

This distributes the error more evenly within the region, but due to the nonlinearity of
logarithm and antilogarithm functions, the errors at the two ends are unequal.

To ensure equal errors at both region boundaries, we define the offset as the average
of the errors at the left and right boundaries:

∆avg(i) =
1
2

[
R
(

i − 1
M

)
+ R

(
i

M

)]
. (32)

Figure 4 illustrates the three approximation lines corresponding to these offset defini-
tions. The fractional range is divided into four regions, with an enlarged view of the third
region for better visualization of approximation errors. When using ∆right, the error is zero
at the right end but increases toward the left end, reaching 0.0276. Using ∆center, the errors
are more evenly spread; however, they remain unequal at the two ends (left: 0.0095, right:
0.0181). The proposed method, which employs ∆avg, ensures that errors at both ends are
equal, yielding an error of 0.0138 for the third region.
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0 1
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Figure 4. Approximation lines corresponding to different offset definitions. (a) ∆right. (b) ∆center.
(c) ∆avg. The fraction is divided into four regions, with an enlarged view of the third region for clarity.

The steps for computing the binary logarithm of a number N using the proposed
method are summarized in Algorithm 3. Figure 5a compares the approximation error of
the proposed method (M = 32) against Mitchell’s [7], Ha and Lee’s [19], and Kuo’s [20]
methods. Figure 5b further illustrates how the approximation error decreases as M increases
from 8 to 16, 32, and 1024.

Summary statistics, including minimum, maximum, mean, and standard deviation
of the errors, are presented in Table 1. The results indicate that errors in Mitchell’s [7] and
Kuo’s [20] methods are all positive, signifying an uneven error distribution. In contrast,
Ha and Lee’s [19] method exhibits a distribution skewed toward negative values. The
proposed method achieves a more balanced error distribution, with both the mean and
standard deviation approaching zero as M increases, making it the most accurate approach
for logarithm computation.

Algorithm 3 Regional Error Correction For Binary Logarithm Calculation

Input: Integer N
Parameter(s): Number of regions M
Output: Logarithm value log(N)

Begin
1: Rearrange N as N = 2k(1 + x), extracting k and x
2: Determine the region index i = ⌊M · x⌋+ 1
3: Compute the offset ∆avg(i) = 1

2

[
R
(

i−1
M

)
+ R

(
i

M

)]
4: Compute the logarithm log(N) = k + x + ∆avg(i)

End

Table 1. Summary statistics of approximation errors for different methods. “Std.” denotes stan-
dard deviation.

Method Minimum Maximum Mean Std.

Mitchell 0.0000 0.0861 0.0573 0.0257
Kuo 0.0000 0.0249 0.0148 0.0065

Ha and Lee −0.0212 0.0070 −0.0024 0.0055

Proposed

M = 8 −0.0225 0.0222 0.0009 0.0072
M = 16 −0.0125 0.0121 0.0002 0.0036
M = 32 −0.0066 0.0062 0.0001 0.0018

M = 1024 −0.0002 0.0001 0.0000 0.0001
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Figure 5. Approximation error analysis of the proposed method. (a) Comparison of errors among
different methods. (b) Approximation errors of the proposed method for varying values of M.

The method for computing the antilogarithm follows a similar approach and is sum-
marized in Algorithm 4. Recall that for a given number N, the logarithm and antilogarithm
computed using Mitchell’s algorithm are k + x and 2k+x, respectively, while the exact val-
ues are k + log2(1 + x) and 2k(1 + x). Mitchell’s approximation assumes log2(1 + x) ≈ x
or 2x ≈ 1 + x. Consequently, the error in computing the antilogarithm using Mitchell’s
algorithm is given by the following:

A(x) = 2x − 1 − x. (33)

Given that the fraction x belongs to the i-th region, the offset ∇avg(i) is defined
analogously as follows:

∇avg(i) =
1
2

[
A
(

i − 1
M

)
+ A

(
i

M

)]
, (34)

2x ≈ 1 + x +∇avg(i). (35)

Algorithm 4 Regional Error Correction For Antilogarithm Calculation

Input: Logarithm value log(N)

Parameter(s): Number of regions M
Output: Antilogarithm value N
Begin

1: Compute the integer k = ⌊log(N)⌋ and fraction x = log(N)− k
2: Determine the region index i = ⌊M · x⌋+ 1
3: Compute the offset ∇avg(i) = 1

2

[
A
(

i−1
M

)
+ A

(
i

M

)]
4: Compute the antilogarithm N = 2k+1+x+∇avg(i)

End

4. Error Analysis
We have introduced the proposed method for computing binary logarithms and

antilogarithms and demonstrated its superiority over benchmark methods. In this section,
we analyze the division error and investigate the impact of two key parameters: the
partitioning parameter M and the wordlength W of the offsets ∆avg(i) and ∇avg(i).

Let Q′ denote the quotient obtained by using the proposed method, and let Q denote
the reference quotient computed using the standard digit recurrence method [10]. Although
digit recurrence is the slowest among the three division techniques discussed in Section 2,
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it is also the most accurate. Therefore, we use digit recurrence division as the reference
method in this analysis. The division error is defined as follows:

E =
Q′ − Q

Q
. (36)

Table 2 presents the error variation when the wordlength is fixed at 10 bits, and the
partitioning parameter is varied. The analysis also considers different wordlengths for
the dividend, divisor, and quotient. To represent wordlength configurations, we use the
notation “Input/Output,” where “Input” specifies the wordlength of the dividend and
divisor, while “Output” indicates the wordlength of the quotient. For example, the notation
“8/16” in Table 2 signifies that both the dividend and divisor are 8-bit numbers, while the
quotient is represented using 16 bits.

Table 2. Error analysis for varying partitioning parameter M. The wordlength W of the offsets ∆avg(i)
and ∇avg(i) is fixed at 10 bits.

Metric M Input/Output Wordlength (Bits)
8/16 9/18 10/20 11/22 12/24 13/26 14/28 15/30 16/32

E (%)

8 3.493 3.657 3.657 3.698 3.719 3.729 3.724 3.722 3.721
16 1.774 1.951 1.989 1.994 2.035 2.034 2.040 2.042 2.045
32 0.971 0.859 0.952 0.997 1.010 1.021 1.021 1.024 1.023

1024 0.103 0.103 0.110 0.112 0.111 0.112 0.112 0.108 0.111
2048 0.120 0.100 0.120 0.112 0.102 0.102 0.098 0.103 0.103
4096 0.098 0.100 0.094 0.112 0.103 0.098 0.103 0.112 0.112

From Table 2, it is evident that the error decreases significantly as the partitioning
parameter increases. When the fraction is divided into 1024 regions, the error is approxi-
mately 0.1%, indicating that division using the proposed method closely approximates the
standard digit recurrence method. Even with a relatively low partitioning parameter of
M = 8, the error ranges between 3.5% and 3.7%, which is a substantial improvement over
the 12.5% error observed with Mitchell’s algorithm.

Table 3 examines the error variation when the partitioning parameter is fixed at
1024 and the wordlength is varied. Similar to Table 2, this analysis evaluates different
wordlengths for the dividend, divisor, and quotient. The results confirm that the error
decreases as the wordlength of the offsets increases. However, beyond 10 bits, the reduction
in error becomes negligible. As demonstrated in Table 2, the division error associated with
the proposed method is significantly lower than that of Mitchell’s algorithm.

Table 3. Error analysis for varying wordlength W of the offsets ∆avg(i) and ∇avg(i). The partitioning
parameter M is fixed at 1024.

Metric W Input/Output Wordlength (Bits)
8/16 9/18 10/20 11/22 12/24 13/26 14/28 15/30 16/32

E (%)

8 0.452 0.395 0.452 0.452 0.452 0.452 0.403 0.398 0.417
10 0.103 0.103 0.110 0.112 0.111 0.112 0.112 0.108 0.111
12 0.044 0.044 0.045 0.037 0.041 0.040 0.042 0.039 0.042
14 0.034 0.032 0.037 0.034 0.034 0.034 0.031 0.028 0.031
16 0.031 0.034 0.033 0.032 0.034 0.034 0.028 0.028 0.030
18 0.032 0.033 0.034 0.032 0.034 0.032 0.028 0.027 0.031

Although increasing M and W reduces division error, higher values of these parame-
ters also increase hardware complexity. Fortunately, from Tables 2 and 3, it is evident that
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no significant improvements are observed beyond M = 1024 and W = 10. Based on this
observation, we adopt M = 1024 and W = 10 for the hardware implementation discussed
in Section 5, demonstrating that the proposed divider is significantly more compact and
energy-efficient than benchmark designs.

This error analysis validates the effectiveness of the proposed method for division
operations. It maintains the computational simplicity inherent in logarithm-based division
while significantly enhancing precision. The subsequent section presents the hardware
implementation and evaluates its computational efficacy.

5. Hardware Implementation
5.1. Hardware Architecture

Figure 6 illustrates the hardware architecture for implementing the proposed divider.
The wordlengths of all signals are configured for an example case with an 8-bit dividend,
8-bit divisor, and 16-bit quotient.
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Figure 6. Hardware architecture of the proposed divider. REG, MSB, and LSB denote register, most
significant bit, and least significant bit, respectively. The “...” symbol indicates that the data path for
the divisor is identical to that of the dividend.

The computation begins by extracting the integer part k and the fraction part x from the
input numbers. The proposed design scans from the most significant bit (MSB) rightward to
locate the first nonzero bit, which determines k (with the least significant bit (LSB) assigned
position zero). The input number is then shifted left until the first nonzero MSB is removed,
leaving the fraction x. In Figure 6, two priority encoders perform this operation.

Next, the integer and fraction are concatenated, and the logarithm of the divisor is
subtracted from that of the dividend. Borrow propagation in binary subtraction naturally
accounts for the two cases in Equation (17). A 2-to-1 multiplexer determines whether the
fraction is zero, as the offset is applied only when the fraction is nonzero.

The logarithm offset ∆avg(i) and antilogarithm offset ∇avg(i) are precomputed for
M = 1024 and W = 10 bits. These values are stored in a small LUT, which is mapped
to logic circuits on the target FPGA. To retrieve the offsets, the fractions of the dividend,
divisor, and quotient are zero-padded to 10 bits and used as LUT addresses.

Once the logarithm of the quotient is obtained, the integer and fraction are extracted
via bit slicing. The integer serves as a selection signal, while the fraction is padded with a
leading 1 and shifted according to the integer value.

The entire hardware architecture completes the division in just six clock cycles, a sig-
nificant improvement over the standard digit recurrence and functional iteration dividers,
which requires 16 and 8 clock cycles, respectively.
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5.2. FPGA Implementation and Performance Evaluation

The hardware architecture was implemented using Verilog HDL (IEEE standard 1364-
2005) [21] and targeted to the XCZU7EV-2FFVC1156 FPGA, part of the Zynq UltraScale+
family. This chip features an Arm Cortex-A53 quad-core processor, a Cortex-R5F dual-core
real-time processor, a Mali-400 GPU, 460, 800 registers, 230, 400 LUTs, 11Mb block RAM, 27 Mb
UltraRAM, 1728 DSP slices, and a video encoder/decoder unit. The implementation was
synthesized using Xilinx Vivado v2024.2 [22], and the results are summarized in Table 4.

To assess scalability, dividers with varying input/output wordlengths were implemented
and compared against restoring digit recurrence, Radix-2, High-Radix, and LutMultA dividers.
Details of the restoring divider implementation are provided in Appendix A of [10], while the
Radix-2, High-Radix, and LutMultA dividers are described by Xilinx [11].

The performance evaluation considered five key metrics:

• Number of registers;
• Number of LUTs;
• Maximum operating frequency ( fmax);
• Power consumption (Pcon);
• Latency.

For High-Radix and LutMultA dividers, the number of block RAMs (BRAMs) and the
number of DSP slices (DSP48s) were also analyzed.

The results indicate that:

• Restoring and Radix-2 dividers exhibit similar resource utilization, power consump-
tion, and latency. However, Radix-2 dividers require more registers, leading to faster
processing speeds for large wordlengths (24/48 and 32/64), albeit with higher power
consumption.

• High-Radix dividers significantly reduce the latency for large wordlengths while
utilizing block RAMs and DSP slices, resulting in lower registers and LUT usage
compared to restoring and Radix-2 dividers.

• LutMultA dividers are more suitable for small wordlengths. For input wordlength
less than 12 bits, they require only 8 clock cycles. Although they are slower than
restoring and Radix-2 dividers, their processing speed remains sufficient for real-
time processing. However, as Xilinx’s divider generator does not support LutMultA
division for wordlengths greater than or equal to 12 bits [11], implementation results
for these cases are marked as NA (not available).

The proposed dividers are more compact and energy-efficient than all other designs,
despite operating at slightly lower frequencies. For example, an 8× increase in input
wordlength (from 8 to 64 bits) leads to 12.7× increase in registers, 13.8× increase in LUTs,
and 2.3× increase in power consumption for restoring dividers. The corresponding in-
creases for Radix-2 dividers are 15.4×, 12.8×, and 2.7×, respectively. As High-Radix and
LutMultA dividers leverage block RAMs and DSP slices, direct comparisons are not ap-
plicable. The proposed dividers exhibit only 2.7×, 3.8×, and 1.4× increases, respectively,
demonstrating superior scalability.

Moreover, the proposed divider maintains a constant latency of six clock cycles, the
lowest among all dividers. Although the proposed divider is slightly slower than restoring
and Radix-2 dividers, it still achieves a minimum fmax of 480.077 MHz, which is sufficient
for real-time pattern recognition systems.
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Table 4. Hardware implementation results of different dividers. The proposed hardware uses
M = 1024 and W = 10. The absence of BRAM and DSP48 usage in restoring, Radix-2, and the
proposed dividers indicates that they do not consume block RAMs or DSP slices. NA stands for
not available.

Method Metric * Input/Output Wordlength (bits)
8/16 9/18 10/20 11/22 12/24 13/26 14/28 15/30 16/32 24/48 32/64

Restoring

Registers 350 433 521 616 722 834 951 1081 1216 2573 4447
LUTs 320 403 485 582 675 761 865 1037 1148 2505 4404
fmax 775.194 775.194 775.194 775.194 775.194 775.194 775.194 775.194 775.194 672.043 627.746
Pcon 0.750 0.764 0.964 0.889 0.921 1.075 1.117 1.160 1.198 1.452 1.726

Latency 17 19 21 23 25 27 29 31 33 49 65

Radix-2

Registers 438 557 681 882 968 1139 1315 1504 1706 3806 6738
LUTs 175 215 260 330 359 415 475 540 608 1297 2241
fmax 775.194 775.194 771.605 771.605 775.194 775.194 771.605 775.194 769.823 775.194 771.605
Pcon 0.721 0.739 0.760 0.932 0.964 1.012 1.048 1.082 1.129 1.492 1.919

Latency 18 20 22 24 26 28 30 32 34 50 66

High-Radix

Registers 558 656 689 724 724 795 873 908 1017 888 1136
LUTs 386 397 431 442 459 473 533 543 727 554 710

BRAMs 1 1 1 1 1 1 1 1 1 1 1
DSP48s 5 5 5 5 5 5 5 5 7 9 11

fmax 673.854 632.111 627.746 628.931 628.931 626.566 591.716 588.582 592.066 591.716 592.417
Pcon 0.763 0.799 0.801 0.807 0.810 1.041 1.025 1.027 1.054 1.192 1.383

Latency 20 21 21 21 21 21 25 25 25 31 35

LutMultA

Registers 170 202 218 225 NA NA NA NA NA NA NA
LUTs 300 308 467 437 NA NA NA NA NA NA NA

BRAMs 0.5 0.5 1 2 NA NA NA NA NA NA NA
DSP48s 0 0 0 0 NA NA NA NA NA NA NA

fmax 532.198 528.541 504.796 437.828 NA NA NA NA NA NA NA
Pcon 0.694 0.903 0.920 0.880 NA NA NA NA NA NA NA

Latency 8 8 8 8 NA NA NA NA NA NA NA

Proposed

Registers 140 152 158 164 174 184 194 204 214 300 380
LUTs 305 391 429 461 469 679 677 717 581 846 1166
fmax 724.638 676.590 685.401 672.043 645.161 529.381 534.474 537.634 573.723 531.915 480.077
Pcon 0.689 0.692 0.699 0.713 0.784 0.787 0.794 0.810 0.825 0.902 0.967

Latency 6 6 6 6 6 6 6 6 6 6 6

* Registers, LUTs, BRAMs, DSP48s are measured as the quantity utilized. fmax represents the maximum frequency,
measured in MHz. Pcon denotes the power consumption, measured in watts. Latency is expressed in clock cycles.

5.3. Practical Application in Image Processing

To demonstrate the practical advantages of the proposed divider, we implemented two
versions of the Image-Fusion-based DeHazing (IFDH) algorithm from [23]: standard version
using digit recurrence dividers, and proposed version using the proposed dividers. Table 5
shows that the proposed version achieves a 9.12% reduction in register usage, a 6.73% reduction
in LUT usage, and a 6.57% lower power consumption, with only a negligible 0.41% reduction
in fmax. These results underscore the potential of the proposed divider in real-time pattern
recognition systems, significantly reducing hardware resource usage and power consumption.

Table 5. Hardware implementation results for two versions of the Image-Fusion-based DeHazing
(IFDH) algorithm. “Standard” refers to the version using standard digit recurrence dividers, and
“Proposed” refers to the version using the proposed dividers.

Metric * Available Standard Proposed
Used Utilization Used Utilization

Registers 460,800 34,566 7.50% 31,413 6.82%
LUTs 230,400 28,718 12.46% 26,785 11.64%

BRAMs 312 66 21.15% 66 21.15%
fmax - 373.276 371.747
Pcon - 2.757 2.576

* Registers, LUTs, and BRAMs are measured as the quantity utilized. fmax represents the maximum frequency,
measured in MHz. Pcon denotes the power consumption, measured in watts.
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Figure 7 showcases the application of IFDH with both divider types. Input aerial
images with varying haze levels (thin, moderate, and dense) are processed by IFDH for
dehazing before object detection using YOLOv9 [24]. As demonstrated in Section 4, the
proposed divider achieves a 0.1% error for M = 1024 and W = 10 bits, ensuring that
replacing the standard dividers does not degrade performance. This is further validated by
the YOLOv9 detection results in Figure 7.

Hazy aerial

images

Dehazed images

using IFDH with

standard dividers

Dehazed images

using IFDH with

proposed dividers

Figure 7. YOLOv9 object detection results on aerial images under varying haze levels using IFDH.
Yellow labels represent airplanes, and blue labels represent birds.

6. Conclusions
In this paper, we introduced a novel method for computing binary logarithms and

antilogarithms using a regional error correction mechanism, which can be easily extended
to general cases. The proposed approach divides the fractional part of the input number
into equally spaced regions and precomputes logarithm and antilogarithm offsets as the
average of two error boundaries for each region. We analysed the approximation error and
compared our method with benchmark techniques to validate its effectiveness.

To demonstrate practical applicability, we developed a six-stage pipelined architecture
for implementing the proposed divider. FPGA-based hardware implementation results
confirmed its superiority over benchmark dividers in terms of resource utilization and
power savings. Furthermore, we integrated the proposed divider into an image-fusion-
based dehazing system and the YOLOv9 object detection framework, achieving notable
reductions in hardware resource utilization and power consumption while maintaining
detection accuracy. These results underscore the potential of the proposed divider in
optimizing real-time pattern recognition systems by reducing hardware overhead, latency,
and energy consumption.

Despite its advantages, the proposed divider is currently limited to integer and
fixed-point division. While these division methods remain essential for low-power, high-
performance computing, extending the approach to floating-point division is a crucial next
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step for broader applicability in future computing systems. We leave this extension as a
direction for future research.
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