
Academic Editors: Junlin Hu and Jie

Wen

Received: 6 January 2025

Revised: 7 February 2025

Accepted: 10 February 2025

Published: 12 February 2025

Citation: Park, H.-C.; Ngo, D.; Kang,

S.H. Domain Adaptation Based on

Human Feedback for Enhancing

Image Denoising in Generative

Models. Mathematics 2025, 13, 598.

https://doi.org/10.3390/

math13040598

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Domain Adaptation Based on Human Feedback for Enhancing
Image Denoising in Generative Models
Hyun-Cheol Park 1 , Dat Ngo 1 and Sung Ho Kang 2,*

1 Department of Computer Engineering, Korea National University of Transportation, 50, Daehak-ro,
Daesowon-myeon, Chungju-si 27469, Republic of Korea; hc.park@ut.ac.kr (H.-C.P.); datngo@ut.ac.kr (D.N.)

2 National Institute for Mathematical Sciences, 70, Yuseong-daero 1689 beon-gil, Yuseong-gu,
Daejeon 34047, Republic of Korea

* Correspondence: runits@nims.re.kr

Abstract: How can human feedback be effectively integrated into generative models?
This study addresses this question by proposing a method to enhance image denoising
and achieve domain adaptation using human feedback. Deep generative models, while
achieving remarkable performance in image denoising within training domains, often fail to
generalize to unseen domains. To overcome this limitation, we introduce a novel approach
that fine-tunes a denoising model using human feedback without requiring labeled target
data. Our experiments demonstrate a significant improvement in denoising performance.
For example, on the Fashion-MNIST test set, the peak signal-to-noise ratio (PSNR) increased
by 94%, with an average improvement of 1.61 ± 2.78 dB and a maximum increase of
18.21 dB. Additionally, the proposed method effectively prevents catastrophic forgetting, as
evidenced by the consistent performance on the original MNIST domain. By leveraging
a reward model trained on human preferences, we show that the quality of denoised
images can be significantly improved, even when applied to unseen target data. This work
highlights the potential of human feedback for efficient domain adaptation in generative
models, presenting a scalable and data-efficient solution for enhancing performance in
diverse domains.

Keywords: generative adversarial network; human feedback; domain adaptation; unseen
domain; denoising

MSC: 68T07

1. Introduction
Deep generative models have achieved remarkable success in image generation

tasks [1–3]. In particular, generative adversarial networks (GANs) are widely known as a
fundamental theory that demonstrates how to generate realistic images. Recently, GANs
are also utilized for specific purposes such as image denoising [4–6], super-resolution [7,8],
and style transfer [9–12]. These objectives involve training GANs using supervised learning
with paired data sets aiming to learn the target distribution, which has been shown to yield
successful results.

However, despite the impressive performance of these models within their training
domain, they often encounter challenges when applied to unseen domains, resulting in
subpar outputs. In the context of GANs based on image-to-image generation [13], which
aim to preserve the original intrinsic characteristics while learning the target distribution,
both successful and unsuccessful cases can emerge during testing on unseen domains. For
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example, when presented with ten samples from an unseen domain, seven of them may
yield successful translations, while the remaining three produce unsatisfactory results. This
raises the question: should we simply discard these three failed samples, or is there a way
to enhance and improve them to achieve better outcomes? Obtaining ground-truth data for
the unseen domain could facilitate domain-specific training; however, in many practical
scenarios, acquiring target data for unseen domains poses significant challenges. As an
alternative, applying domain adaptation methods [14–21] can mitigate this issue, but even
domain-adapted models may still yield failed results based on human preferences.

Our objective diverges from conventional domain adaptation approaches. As demon-
strated in [14,19], domain adaptation focuses on training methods that aim to minimize the
distinguishability between the source and target domain distributions in the latent space.
This macro-level approach seeks to minimize the overall gap between source and target
domains. However, at a micro-level, there remain opportunities for improvement in the
generated results. Therefore, our goal is to address and rectify instances of failure within
the output produced by the trained model.

Similarly, during the training of ChatGPT [22], it excels at generating high-quality
language responses through extensive pre-training on vast data sets. Nevertheless, upon
human evaluation, the generated sentences may exhibit a dichotomy: some appear natu-
rally flowing, while others seem less fluent. To bridge this gap, ChatGPT [22] leverages
human feedback [23] to enhance its ability to produce more seamlessly natural sentences.
Furthermore, in the domain of aligning text-to-image models [24], the introduction of
human feedback has demonstrated significant improvements in model performance. How-
ever, research on model refinement through human feedback in GANs is still scarce, and
through our paper, we aim to showcase the potential of model refinement through the
profound influence of human feedback.

Recently, drawing inspiration from the success of reinforcement learning human
feedback [25] in language domains, we present an innovative approach for unseen domain
adaptation based on human feedback. Analogous to how children learn from the feedback
provided by their parents, we adopt a similar strategy. For instance, if a child learns how
to remove noise from the background of a single image, they can subsequently apply
denoising techniques to new images. While the quality of the denoised image may vary,
receiving feedback from a parent can lead to improvement. Even if we cannot surpass our
previous achievements, we can still imitate and learn from them. This approach shows
promise in addressing the challenges of unsupervised unseen domain adaptation and
opens new possibilities for model enhancement through the profound influence of human
feedback. As we explore this innovative avenue, our aim is to make significant contributions
to the field of AI and foster advancements in human-guided domain adaptation research.

To achieve this, we introduce a deep feedback network that utilizes human feedback
to the adaptation of an unlabeled target domain. As illustrated in Figure 1, to replicate
restricted learning circumstances, we conduct experiments on the denoising problem.
Initially, we train the model using a restrictive training approach, focusing solely on
denoising the digit ‘0’ within the MNIST data set. Subsequently, we evaluate the model’s
performance on the Fashion-MNIST data set, which represents an unseen domain. It
becomes evident that the pre-trained model, trained on MNIST, produces unintended
results when applied to the unseen domain. To adapt to the unseen domain, we introduce
a training method based on human feedback. Human feedback assesses the model’s results
in the unseen domain as either ‘Good’ or ‘Bad’. The model is then fine-tuned using the
gradient of these assessments. This approach shows promising potential for efficiently
fine-tuning the model using feedback from generators trained in other domains.
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Figure 1. Overview of adaptation training: Step 1 involves pre-training the generator, Step
2 uses a reward model trained with human feedback, and Step 3 fine-tunes the generator for
domain adaptation.

We can summarize our main contributions as follows

• We propose an adaptation method for the domain of image-based generative models
through human feedback.

• We perform domain adaptation while maintaining the quality of the generated image
using an optional loss function with a reward model using human feedback.

• We show that the model can be adapted by human feedback, even in the absence of
labeled target data.

2. Methods
Our overall process consists of three steps. First, the denoising model is pre-trained in

the basis domain, serving as the fundamental ability for denoising. Next, the reward model
is trained using human feedback. To train the reward model, humans manually annotate
denoised images as either Good or Bad. Finally, the basis generator is re-trained using the
reward model. Even if the generator produces denoised images of low quality, it will be
trained to prioritize good results based on the provided human feedback.

2.1. Pre-Training Basis Domain for Denoising

In this step, we focused on creating an intentional class-biased generator. The model
is trained to acquire the fundamental ability of denoising using simple images, as shown
in Step 1 of Figure 2. The architecture of the model consists of generative adversarial
networks (GANs). We employed the pix2pix [26] model as our baseline, which relies on
paired training. To train the model, a paired data set is required, consisting of both clean
and noisy images. For our paired training data set, we used only 0 digits in the MNIST data
set. To create a pair, 0-digit images were selected and combined with synthesized noise.
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Consider the synthesized noise of image z, which is a 2D image represented as z ∈ Rm×n.
It is composed of both the original image and noise, denoted as x and n, respectively:

z = x + n. (1)

We assume that the clean image is selected from the source domain. Therefore, the synthe-
sized noise image z and the original image x are treated as paired data. For convenience
notation, the source and unseen domain data are denoted as zs and zu, respectively.

Figure 2. The training data set ‘0’ is sourced from the MNIST data set, while the new domain
data set is the Fashion-MNIST data set. The Gs model in Step 2 is trained on the MNIST data set
during Step 1. Subsequently, the Gs model in Step 3 is fine-tuned using the reward model based on
human feedback.

The generator is trained to produce samples of good quality from input noise variables
pn. To train the model on the source domain, the final loss is defined as follows:

Lstep1(Gs, D) = LGAN(Gs, D) + Lpixel−wise(Gs) (2)

where the samples Gs(zs) are obtained when zs ∼ pn follows a distribution that represents
good quality in the source domain. In other words, The generator Gs is trained to learn the
mapping from the noise image z to the clean image x, denoted as Gs : zs → x. The objective
of the generator is to estimate the distribution of x, denoted as Gs(zs) ≈ x. To achieve
this, the GAN consists of an adversarial discriminator D, which distinguishes between
‘Real’ and ‘Fake’ images. ‘Real’ refers to the original image x, while ‘Fake’ corresponds
to the generated image Gs(zs) produced by the generator. Both the generator Gs and
the discriminator D are trained adversarially. The objective function can be expressed
as follows:

min
Gs

max
D

LGAN(Gs, D) = Ezs , x [log D(zs, x)]+

Ezs ∼ pn(zs) [log (1 − D(zs, Gs(zs)))]. (3)
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where Gs(zs) represents the generation of a clean image from a noisy image zs. The
discriminator D is responsible for classifying between the real and fake distributions. In
order to induce a mistake in D, Gs aims to minimize Equation (3). On the other hand, D
maximizes the objective function to distinguish between real and generated images.

In our study, we tackle the problem of denoising while preserving the underlying mor-
phological structures. Traditional GAN [1] frameworks approximate the target distribution
during training. However, in the context of image processing, the generated images may
inadvertently alter the essential morphological characteristics of the originals [26–28]. To
mitigate this issue and ensure the preservation of morphological structures, an auxiliary
loss term is incorporated into the objective function:

Lpixel−wise(Gs) = Ezs , x [∥x − Gs(zs)∥1]. (4)

Similar to the [26] approach, the auxiliary loss employs the L1 distance between the target
image x and the generated image Gs(zs).

2.2. Human Feedback and Training Reward Model

The integration of human feedback has demonstrated high adaptability across various
domains [24,25,29]. This valuable information is used to train a reward model, which acts as
a substitute for human assessment and enhances the model’s performance. In this section,
we provide a detailed description of how human feedback is gathered. In the previous
section, we presented the basic denoising GAN model using pix2pix [26], which we referred
to as the supervised denoising model (SDM). Human feedback is obtained through manual
assessments of the SDM results from unseen domain samples zu. The assessments are
categorized as ‘Good’ if the image was clean and ‘Bad’ if the image contained noise or
collapse (see Step 2 in Figure 2).

The assessments ‘Good’ and ‘Bad’ are utilized as ground truth labels (yr = 0, 1) to
train the reward model. The reward model, denoted as rθ , follows the same architecture as
the discriminator in the SDM. The loss function for rθ is as follows:

Lreward(Ĝs, rθ) = min
rθ

Ezu∼pn(zu) − [yr log rθ(Ĝs(zu), zu)

+ (1 − yr) log (1 − rθ(Ĝs(zu), zu))]. (5)

where Ĝs is a frozen denoising generator model using the source domain. During the train-
ing of the reward model, Ĝs remains untrainable and is solely used to generate denoised
images. rθ assesses these denoised images and is trained using yr labels. Notably, the
reward model can be trained to capture human preferences, as the yr labels are collected
through human feedback.

2.3. Objective

In this section, we present the final formulation of the loss function, which consists of
auxiliary terms. Each auxiliary term includes reward loss, consistency loss, and regulariza-
tion loss, used to train Gt. Here, Gt represents the adapted model, which is fine-tuned from
Gs in the unseen domain. Thus, the architecture and initial parameters of Gt are the same
as those of Gs.

Reward Loss Lr: The primary objective of generator Gt is to generate denoised images that
are assessed by the reward model as ‘Good’ (0, indicating clean images). The minimization
of Lr aims to train generator Gt to generate clean images. In other words, the reward loss
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Lr trains Gt to map from the distribution of ‘Bad’ quality images (distribution j) to the
distribution of ‘Good’ quality images (distribution k), Gt : j → k.

Lr(Gt) = Ezu∼pn(zu) [− log (1 − r̂θ(Gt(zu), zu)]. (6)

where r̂θ is a reward model trained on human feedback that has fixed parameters. Thus, r̂θ

only assesses the quality of the generated image from Gt and the input image zu.
In this context, by fine-tuning Gt from Gs using Lr loss, Gt is able to closely approximate

the x ∼ pdata distribution represented by rθ in an unseen domain. However, relying
solely on Lr loss for training Gt may lead to over-fitting and the risk of distorting the
morphological information of the original images. To alleviate this problem, we describe
‘Regularization Loss’ and ‘Consistency Loss’ as follows.
Consistency Loss Lp: As the model learns from new data, there is a potential issue of
the performance of past good results deteriorating due to parameter updates. This is
commonly referred to as the problem of catastrophic forgetting. To control this issue, it is
necessary to compare the outcomes of the initial parameters with the current results. We
present a novel compensatory term, denoted as Lp, which facilitates a comparison between
the outputs of the initial frozen generator, Ĝs, and the target generator Gt. The primary
objective of Lp is to minimize the pixel-wise L1 loss between the outcomes generated by Ĝs

and Gt, thereby ensuring that the current model preserves crucial insights acquired from
the initial generator throughout the training procedure. By incorporating this approach,
we effectively address the issue of neglecting important details and consequently witness a
notable enhancement in the overall performance of the current model.

Lp(Gt) = Ezu∼pn(zu) [σ(r̂θ(Ĝs(zu), zu))∥Ĝs(zu)− Gt(zu)∥1]. (7)

σ(r) =

0 if r ≥ ϵ

1 if r < ϵ
(8)

where σ is the step function, and r denotes the result of the reward. ϵ is a threshold value
ranging from 0 to 1.
Regularization Loss Ln: We employ a regularization loss term to address the issues of
over-fitting and mode collapse. In existing methods, the difference in cosine similarity of
feature vectors in the latent space has been compared [21,30]. However, in our approach,
we intuitively compare the outputs of the model from the past and the current training
stages to suppress excessive variations caused by the model’s learning. Ln calculates the
pixel-wise L1 loss between the results of the current generator and the (n − i)th generator
Ĝt. The generator Ĝt copies weights from Gt every N steps and then freezes them.

Ln(Gt) = Ezu∼pn(zu) [∥Ĝt(zu)− Gt(zu)∥1]. (9)

The final loss used to train Gt is as follows:

min
Gt

L(Gt) = Lr(Gt) + αLp(Gt) + (1 − α)Ln(Gt). (10)

where, α controls the relative balance of the two Lp and Ln losses. In the ablation study,
we analyze the impact of each auxiliary loss on the final loss. Figure 3 represents the flow
diagram of the more specific final objective loss functions we designed.
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Figure 3. Flow diagram of the final objective loss functions: Lr drives domain adaptation, while Lp

prevents catastrophic forgetting, and Ln ensures regularization.

3. Experiments
3.1. Data Sets

We utilized two data sets in our experiments: MNIST [31] and Fashion-MNIST [32].
MNIST is a grayscale image data set consisting of 10 classes representing digits from 0 to 9.
Each MNIST image has dimensions of 28 × 28 pixels. The data set comprises a training set
of 60,000 images and a test set of 10,000 images.

In the experiments, the MNIST data set serves as the source domain for training the
initial denoising generator. Specifically, only the ‘0’ digit is used for restrictive training on
the source domain. The training set consists of 6000 samples, and the validation set contains
1000 samples. The MNIST images are resized to a size of 256 × 256 pixels using bicubic
interpolation. To train the initial denoising generator, a pair of data points is required,
consisting of clean and noisy images. The original MNIST data set is used as the clean
image counterpart, while the noisy images are created by introducing artifact noise in the
form of salt-and-pepper noise combined with Gaussian noise. The salt-and-pepper noise
was applied with equal proportions of salt and pepper pixels at 50%, while the Gaussian
noise was added with a mean of 0 and a standard deviation of 0.05, perturbing the pixel
intensity values. This approach ensures a controlled and reproducible noise level, typical
for evaluating image denoising models [33].

Fashion-MNIST is a data set consisting of images representing 10 types of fashion
items. It also includes a training set of 60,000 images and a test set of 10,000 images. Fashion-
MNIST is employed to evaluate the model’s performance and train adaptive learning. The
images in Fashion-MNIST are resized to 256 × 256 pixels and similarly augmented with
noise, as conducted with the MNIST data set.

3.2. Training Setting

Pre-training for denoising: “pix2pix” [26] is employed as the baseline model in this
experiment. The main objective of most GANs is to establish a mapping G : Z → X.
“pix2pix” demonstrated the training approach for pixel-wise mapping between input
and output images. Consequently, the generator of “pix2pix” can effectively learn the
transformation from the noise space Z to the clean space X. In this experiment, we trained a
denoising model, denoted as Gs, using the MNIST data set. Gs was specifically trained using
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a set of 1000 image pairs consisting of clean digits and their corresponding noisy versions.
The clean images used in the training process were specifically selected to represent the
digit ‘0’. For optimization, we employed the Adam solver [34] with a batch size of 10, a
learning rate of 0.0002, and momentum parameters β1 = 0.5 and β2 = 0.999. The denoising
model was trained for 200 epochs.
Inference and human feedback: In this paper, our proposed method demonstrates the
adaptability of a pre-trained model to a target domain through human feedback. To gather
human feedback, the pre-trained generate model Gs is used to infer results in the target
domain, which are then manually assessed by human evaluators. In our experiments, we
employ Fashion-MNIST as the target domain data set, and we collect human feedback for
the 10,000 test images in this data set.
Training for reward model by human feedback: The reward model, denoted as rθ , is
utilized in the auxiliary loss term. The architecture of the reward model is designed to
be the same as the discriminator of the “pix2pix” model. The hyperparameters used for
training rθ remain consistent with the pre-training setting.
Adaptive training by human feedback: Note that the adaptive training process implements
Equation (10), utilizing the same set of hyperparameters as mentioned above. It is important
to note that Gt has trainable parameters, whereas Ĝs, Ĝt, and r̂θ are untrainable parameters.
The constant ϵ in Equation (8) is set to 0.2, and the constant α in Equation (10) is set to 0.9.
In the ablation study, we examine the influence of Lp and Ln as α is varied.

3.3. Evaluation

We evaluate the quality of the denoised images using the metrics of PSNR (peak
signal-to-noise ratio) and SSIM (structural similarity index measure). PSNR is a widely
used metric for evaluating denoising models. It measures the quality of the denoised image
by comparing it to the original (clean) image. Higher PSNR values indicate better denoising
performance. PSNR can be calculated using the mean squared error (MSE) between the
denoised image and the original image. SSIM is another popular metric that quantifies the
similarity between the denoised image and the original image. It takes into account not
only pixel-level differences but also structural information, such as luminance, contrast,
and structure. Higher SSIM values indicate better preservation of structural details.

3.4. Results of Domain Adaptive Denoising by Human Feedback

Comparison of evaluation metrics: In this section, we examine the results of domain
adaptive denoising. Our intuition is that, even when presented with unseen data from a
target domain, if we provide human feedback to a supervised learning model, the model
can adapt to the data effectively. Note that our human feedback is not ground-truth for
a denoised image; it shows human preference, consisting of ‘Good’ and ‘Bad’. In Table 1,
‘Gs(z) vs. x’ represents the denoising results of the model before adaptive learning using
human feedback. ‘Gt(z) vs. x’ shows the denoising outcomes of the adapted model
based on human feedback. The results obtained from the MNIST data set indicate the
performance in the pre-trained domain, while the results from the Fashion-MNIST data set
reflect the performance on unseen data. Therefore, we can observe the adaptation progress
between the initial model Gs and the updated model Gt. In our experiments, both Gs and
Gt demonstrated a significant improvement in PSNR measured on the Fashion-MNIST test
set, with an overall increase of 94% over the entire 10K data set. The statistical analysis
of the PSNR improvement revealed a mean increase of 1.61 ± 2.78 dB (MAX: 18.21, MIN:
0.0001). Figure 4a shows the images with the most significant increase in PSNR, along
with the corresponding metrics between each generator output image and the ground
truth image. In addition, for the remaining 6% of cases, there was a decrease in PSNR
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values, with the statistical analysis showing a mean decrease of 0.12 ± 0.18 dB (MAX:
2.75, MIN: 0.0001) (See Figure 4b). Figure 5 shows the boxplot of PSNR for each generator
Gs and Gt on the experimental data set. The Gt images from the same data set exhibit
higher PSNR values, indicating improved image quality after adaptation. Particularly
noteworthy is that after adaptation, the PSNR and SSIM values of the MNIST test set (10K)
from the Gt generator, corresponding to the source domain, show little to no variation
or even slight improvement (see Figure 5a). This demonstrates the prevention of the
catastrophic forgetting issue for the source domain even after adaptation to the target
domain. Furthermore, we apply the Gt model tuned on the Fashion-MNIST test set with
the reward model to the Fashion-MNIST training set (60k). This demonstrates that when
the reward model is trained in a new domain, it can effectively work without requiring
additional training.

Figure 4. Visual results for adaptation. The PSNR and SSIM values for each image are calculated
with respect to the ground truth. Gs represents the model pre-trained on MNIST, while Gt represents
the model fine-tuned from Gs using human feedback. (a) Sample images with the most significant
increase in PSNR from Gs and Gt output. (b) Most decreased PSNR images.
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Figure 5. Boxplot of PSNR for each generator Gs and Gt on the experimental data set. Even after
fine-tuning Gt on unseen data, we observe that Gt produces results without PSNR degradation in the
pre-training domain. This finding demonstrates the effectiveness of our proposed method, which
utilizes human feedback to mitigate catastrophic forgetting. (a) MNIST test set (10k). (b) Fashion-
MNIST test set (10k). (c) Fashion-MNIST train set (60k).

Table 1. Result of fine tuning using human feedback. Each row corresponds to the outcomes under
different conditions of the loss function. The first row represents our proposed results. The second
row shows results without Lp loss, the third row shows results without Ln loss, and the fourth row
shows results using only Lr loss. The fifth row presents results from the model trained on the source
domain, and the last row displays the baseline results between noisy and clean images.

MNIST Test (10k) Fashion-MNIST Test (10k) Fashion-MNIST Train (60k)

PSNR SSIM PSNR SSIM PSNR SSIM

Gt(z) vs. x 29.36 ± 0.92 0.95 ± 0.01 25.68 ± 3.91 0.84 ± 0.11 25.75 ± 3.86 0.84 ± 0.10
Gt(z) vs. x/wo Lp loss 24.20 ± 0.65 0.66 ± 0.08 25.00 ± 2.44 0.68 ± 0.10 25.07 ± 2.37 0.69 ± 0.10
Gt(z) vs. x/wo Ln loss 29.10 ± 0.98 0.95 ± 0.01 25.30 ± 4.35 0.83 ± 0.12 25.41 ± 4.25 0.83 ± 0.12
Gt(z) vs. x/only Lr loss 20.66 ± 0.69 0.82 ± 0.03 17.97 ± 2.15 0.58 ± 0.13 18.03 ± 2.14 0.58 ± 0.12

Gs(z) vs. x 29.26 ± 1.04 0.94 ± 0.01 24.18 ± 5.57 0.80 ± 0.16 24.27 ± 5.52 0.80 ± 0.16
Baseline source (z vs. x) 14.72 ± 0.06 0.12 ± 0.01 13.23 ± 0.13 0.07 ± 0.13 13.23 ± 0.13 0.07 ± 0.02

Visual evaluation: Figure 4 illustrates the improvement in denoising and restoration,
particularly in addressing image collapse. Notably, Gs trained on the ‘0’ digits of MNIST,
exhibits instances where the results suffer from image collapse in several images, indicating
a lack of adaptation. However, our approach effectively enhances the image quality by
leveraging human feedback, as demonstrated by the results obtained with Gt.

3.5. Ablation Study

To validate the effectiveness of each loss term of our method, we conduct comprehen-
sive ablation studies for the loss term.

Effect of Lp term: The Lp term compares the image quality between Gs and Gt and is the
loss function between images that are well evaluated by human feedback based on the
reward function. We examine the effect of the Lp loss on the quality of the output. Typically,
the constant alpha of Lp is fixed at 0.9. To evaluate the effect of excluding the Lp term, we
vary the alpha value to 0, resulting in the loss equation becoming L(Gt) = Lr(Gt) + Ln(Gt).
Performing the adaptation without an Lp term exhibits low quantitative performance, as
demonstrated in the second row of Table 1. Additionally, Figure 6d,e depict the anomaly
texture created in the image for reference.
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(a) (b) (c) (d) (e) (f) (g)

Figure 6. Comparison of image quality with and without the auxiliary loss. (d–g) Results with
different auxiliary loss conditions. Each condition improves the image quality compared to (c), but
there are noticeable differences in details such as texture and artifacts. (a) Input image with noise.
(b) Ground truth. (c) Denoised images by Gs. (d) Denoised images by Gt. (e) Denoised images by
Gt without the Lp term. (f) Denoised images by Gt without the Ln term. (g) Denoised images by Gt

using only the Lr term.

Effect of Ln term: Ln represents the L1 loss between the (n − 2)th and (n)th iterations of
G(Ĝt and Gt). In terms of quantitative evaluation, it demonstrates comparable performance
(Table 1, first and third row). However, in qualitative assessment, it becomes evident
that there are limitations in generating the desired image to a satisfactory degree. (See
Figure 6d–f). We also examine the effect of Ln loss on the output quality. The role of Ln is
to restrict significant parameter changes from the previous model. Given that the function
of Ln is to restrict parameter updates between the previous and current models, it becomes
apparent that there are limitations in generating the desired image to a satisfactory extent
in qualitative evaluation, leading to potential issues such as collapse.
Effect of Lr term: Lr represents the cross-entropy loss used to distinguish between ‘Good’
and ‘Bad’ cases. In the experiments where Lp and Ln are ablated, the adaptation relies solely
on Lr, resulting in parameter updates exclusively driven by human feedback. Consequently,
in the absence of pixel-wise losses, such as Lp and Ln, it is evident that image details and
shapes are not preserved, as illustrated in Figure 6d–g.

4. Discussion and Conclusions
In this paper, we propose a novel method based on human feedback to address the

domain adaptation problem of denoising generative models, particularly focusing on the
condition of an unlabeled target domain. Unlike conventional approaches that aim to
enhance a generative model’s overall performance on the entire test data set, our method
leverages human feedback to directly improve the quality of failed images in denoising
tasks. While many existing approaches require a large amount of labeled data and may
discard failed images, our approach fine-tunes the model based on human feedback,
similar to the process used in ChatGPT [22] to select generated sentences of ‘Good’ quality.
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This novel utilization of human feedback represents a promising avenue for enhancing
generative models.

A comparison with existing domain adaptation techniques highlights the distinct fea-
tures of the proposed approach. Conventional domain adaptation methods primarily focus
on minimizing the distributional gap between the source and target domains [14–21]. While
these approaches effectively address macro-level domain shifts, they often lack the ability
to correct fine-grained failure cases in individual images. In contrast, the proposed method
introduces a micro-level adaptation strategy by incorporating human feedback to specifi-
cally target and improve failure cases within the target domain. This fine-grained approach
to domain adaptation has not been extensively explored in prior studies and provides a
novel perspective on improving model performance beyond conventional techniques.

To assess the effectiveness of the proposed method, a performance comparison was
conducted using PSNR (peak signal-to-noise ratio) and SSIM (structural similarity index
measure). The experimental results demonstrate a 94% improvement in PSNR in the target
domain, indicating a substantial enhancement in performance compared to traditional
domain adaptation techniques. This quantitative evaluation confirms the effectiveness of
leveraging human feedback for fine-tuning generative models and highlights its potential
in practical applications.

The originality of this study lies in its novel integration of human feedback into gener-
ative AI for domain adaptation. Rather than relying on large labeled datasets, as is common
in existing domain adaptation approaches, the proposed method utilizes subjective human
evaluations to adapt the model efficiently and effectively. This strategy not only reduces
the dependency on extensive labeled datasets but also enhances the adaptability of the
model to real-world scenarios where failure cases require specific adjustments. By employ-
ing human-guided model fine-tuning, this study introduces an innovative approach to
improving the robustness and flexibility of generative AI models.

We proposed a novel human-guided domain adaptation approach for image denoising
and demonstrated its effectiveness on MNIST and Fashion-MNIST datasets. Notably, the
PSNR improved by 94% on the Fashion-MNIST test set, with an average increase of
1.61 ± 2.78 dB and a maximum of 18.21 dB, while preserving performance on the original
MNIST domain. These results highlight the potential of human feedback in enhancing
model adaptability and performance across domains.

Domain adaptation poses challenges, particularly regarding the issue of catastrophic
forgetting. However, through our proposed adaptation approach, which incorporates
selective loss functions and an ablation study based on decisions from a reward model
trained with human feedback, we successfully mitigated the challenging issue of catas-
trophic forgetting. Our results align with related studies, demonstrating the effectiveness
of our approach.

Despite its success, the study has limitations, including the possibility of overfitting
to specific noise types and challenges in applying the method to more complex datasets.
Future research will address these limitations by testing on high-resolution datasets and
exploring methods to standardize and optimize human feedback collection.

In the context of real-world applications, the unseen data domain adaptation of deep
generative models has always been a crucial research topic. In this paper, we demonstrate
the adaptation of a model trained on the source domain to the label-less target domain,
guided by human feedback. Through ablation study, we analyzed the loss functions and
provided compelling evidence for the direction of domain adaptation research, particularly
in the realm of image generation.

Although the proposed method has been successfully applied to simple image datasets,
such as MNIST and Fashion-MNIST, its performance may not be guaranteed when extended
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to more complex images (e.g., medical imaging or natural photographs). Additionally, if
feedback is inconsistent across users, the model’s performance may deteriorate. To mitigate
these issues, further exploration of feedback integration and standardization methods
is required.

To improve the reliability and efficiency of human feedback in future work, we will
explore several key strategies. Specifically, we aim to analyze the correlation between
feedback reliability and performance improvement to develop an optimized feedback
collection strategy that minimizes the amount of required feedback while maximizing its
effectiveness. In addition, we will investigate cost-effective methods for large-scale feedback
collection, such as utilizing crowdsourcing platforms or user-friendly interfaces, to enhance
the practical feasibility of integrating human feedback into real-world applications. These
efforts will be complemented by measures to ensure consistency and reliability, including
the integration of multiple feedback sources and the establishment of clear evaluation
criteria to minimize potential biases. To further reduce dependence on human feedback, we
will also explore automated evaluation techniques, such as proxy model learning, which
can either supplement or replace human input while preserving model adaptability and
performance. These strategies will contribute to improving the scalability and robustness of
the proposed approach, facilitating its application in more complex and diverse domains.

Furthermore, we will grapple with two things as follows: 1. Human preference: Our
work also collects human feedback data by personal preference, similar to ChatGPT. Thus,
the distribution of ‘Good’ quality can be different. This will be connected directly with the
model’s performance. 2. Model performance is dependent on pre-training: We assume that
the SDM is over a certain level. However, if SDM does not work in an unseen domain, we
can not collect human feedback. Human feedback has to be collected in the ‘Good’ and
‘Bad’ categories.
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