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Abstract: Deploying deep neural networks (DNNs) in resource-limited environments—
such as smartwatches, IoT nodes, and intelligent sensors—poses significant challenges
due to constraints in memory, computing power, and energy budgets. This paper presents
a comprehensive review of recent advances in accelerating DNN inference on edge plat-
forms, with a focus on model compression, compiler optimizations, and hardware–software
co-design. We analyze the trade-offs between latency, energy, and accuracy across var-
ious techniques, highlighting practical deployment strategies on real-world devices. In
particular, we categorize existing frameworks based on their architectural targets and
adaptation mechanisms and discuss open challenges such as runtime adaptability and
hardware-aware scheduling. This review aims to guide the development of efficient and
scalable edge intelligence solutions.
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1. Introduction
Artificial intelligence (AI) research encompasses a broad range of techniques aimed

at enabling machines to perform intelligent tasks. A key subset of AI is machine learning
(ML), which focuses on developing algorithms that allow systems to learn from data, or,
in other words, to automatically improve through experience. Within ML, there exists
the brain-inspired approach that seeks to mimic biological processes and includes spiking
neural networks (SNNs) and artificial neural networks (ANNs). A crucial subset of ANNs
is deep learning (DL), which leverages multi-layered neural networks to model complex
data patterns and achieve state-of-the-art performance in various AI applications [1].

At the core of a deep neural network (DNN) is the artificial neuron (Figure 1a), which
is inspired by biological neurons. In this analogy, the inputs represent signals received by
the neuron’s dendrites, the weights correspond to the synaptic strength that determines
the importance of each input, and the output is transmitted through the axon to other
neurons. A neural network (Figure 1b) consists of multiple neurons organized into layers:
the input layer, which receives raw data; one or more hidden layers, where computations
and transformations occur; and the output layer, which generates predictions. A DNN
(Figure 1c) extends this structure by incorporating multiple hidden layers, allowing it
to learn complex hierarchical features and capture intricate patterns in data, making it
particularly powerful for tasks such as image recognition, natural language processing,
and autonomous systems.
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Figure 1. Deep learning fundamentals: (a) Neuron. (b) Neural network. (c) Deep neural network.

Notations: xi = input data, w[k]
ij = weights associated with synapse from neuron i to neuron j in

layer k, b[k] = bias in layer k, f (·) = activation function, a[k]i = activation of neuron i in layer k, and
yi = predicted output.

As illustrated in in Figure 2, deep learning consists of two key phases: training and
inference. Training is the process where a neural network learns patterns from data by
adjusting its weights using optimization techniques such as Adam [2] or stochastic gradient
descent (SGD) [3]. During training, large labeled datasets are used, and backpropagation
is applied to minimize the error between predictions and actual labels. This phase is
computationally intensive, often requiring powerful hardware like GPUs or TPUs. In
contrast, inference is the deployment phase, where the trained model is used to make
predictions on new, unseen data. Unlike training, inference does not involve updating
weights but instead performs forward propagation to generate outputs. As inference
requires significantly fewer computations, it can run on edge devices or cloud-based
systems, making deep learning models practical for real-world applications.
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Figure 2. Illustration of training and inference workflow. Notations: W[k]
old = current set of weights in

layer k, W[k]
new = updated set of weights in layer k, ∂L/∂W[k] = gradient of loss L, and α = learning rate.
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Edge inference (EI) occurs directly on local devices such as smartphones, IoT de-
vices, or embedded systems, enabling real-time processing with low latency and reduced
dependency on network connectivity. This approach enhances privacy and security by
keeping data on the device but may be constrained by computational resources and power
consumption. In contrast, cloud inference leverages powerful servers to process data
remotely, allowing for more complex and larger models that require substantial computa-
tional resources. Cloud inference can handle multiple requests simultaneously and is ideal
for large-scale applications, but it depends on network connectivity and may introduce
latency. The focus of this paper is EI due to its numerous practical applications across
various industries.

In autonomous vehicles, EI allows for rapid processing of sensor data, such as cam-
era feeds and LiDAR scans, to detect obstacles and make driving decisions instantly. In
healthcare, wearable devices use EI to monitor vital signs and detect anomalies, such as ir-
regular heartbeats, without needing continuous internet access. Smart surveillance systems
leverage edge AI to analyze video footage in real time, detecting suspicious activities while
preserving privacy by keeping sensitive data on the device. In industrial automation, EI
enhances predictive maintenance by analyzing sensor data to detect potential equipment
failures before they occur. Additionally, in consumer electronics, voice assistants and smart
home devices use EI to process commands quickly and respond without delay. These
applications highlight the benefits of EI, including low latency, enhanced privacy, and
reduced dependency on network infrastructure.

The evolving trend of performing inference on edge devices introduces several crit-
ical design challenges that must be addressed to support the rapid advancements in DL
algorithms. One major challenge is programmability, as hardware must be adaptable to
accommodate frequent updates and changes in DL models. Additionally, real-time per-
formance is a key requirement, especially for edge applications that demand immediate
processing and decision-making within strict latency constraints. Another significant con-
cern is power consumption, as edge devices often operate with limited energy resources,
making efficiency a top priority. While customized, application-specific hardware can
significantly enhance energy efficiency, it often comes at the cost of reduced flexibility and
programmability, limiting its ability to adapt to new algorithms. Consequently, edge device
design involves a careful balancing act, optimizing trade-offs between performance, power
efficiency, latency, energy consumption, cost, and form factor to achieve the best possible
results for real-world applications.

The growing demand for intelligent services anywhere, anytime, has driven AI re-
search toward edge computing. Additionally, the widespread adoption of connected
gadgets, portable processing platforms, embedded sensing units, and IoT systems gen-
erates vast amounts of edge data. By 2030, an estimated 5.8 billion IoT devices will be
connected to cyberspace [4]. However, transferring this massive data to the cloud presents
challenges in network capacity, bandwidth, and security. Edge computing addresses these
issues by processing data closer to its source, enabling real-time, efficient, and secure
computing while facilitating EI implementation. Several surveys explore different aspects
of DL and EI:

• Studies on DL architectures, algorithms, and applications exist but lack discussions on
latest compression techniques for edge intelligence [5–7].

• Research on compression methods, such as low-rank approximation, pruning, and
weight sharing, includes hardware acceleration but excludes software frameworks
and broader hardware platforms [8–10].

• Reviews on convolutional neural network (CNN) hardware implementation cover
ASICs and FPGAs but neglect software–hardware co-design and EI pipelines [11,12].
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• ML frameworks and compilers have been reviewed but without considering edge-
specific compression and optimization [13].

Despite extensive research, no single survey provides a comprehensive review of DNN
inference on resource-limited edge environments, addressing model development, model
size reduction, integrated design, and programming environments, targeting hardware
architectures, performance benchmarking, and challenges. This paper aims to bridge these
gaps in existing surveys by focusing on lightweight models, compression techniques, and
software–hardware co-design. Major contributions include

• A comprehensive discussion on EI techniques, including compression, hardware accel-
erators, and software–hardware co-design, along with a classification of compression
strategies, practical applications, benefits, and limitations;

• A detailed review of software tools and hardware platforms with a comparative
analysis of available options;

• Highlighting design hurdles and proposing avenues for future investigation in efficient
edge intelligence, outlining unresolved problems and potential advancements.

2. Edge Inference of Deep Learning Models
Edge inference of DL models enables real-time processing by reducing latency and

bandwidth usage compared to cloud-based inference. It can be categorized into three main
strategies: inference on edge servers, on-device inference at edge nodes, and cooperative
inference that distributes workloads between edge nodes and edge servers, each offering
distinct benefits and trade-offs:

• Inference on edge servers involves deploying DL models on local computing nodes
near data sources, such as micro data centers or 5G base stations. This approach offers
higher computational power than standalone edge devices, allowing for complex
model inference with lower latency compared to cloud solutions. However, it still
requires network connectivity, which can introduce variable delays, and may have
limited scalability compared to large cloud infrastructures.

• On-device inference on edge nodes runs DL models directly on resource-constrained
hardware, such as smartphones, IoT devices, and embedded systems. This method
ensures real-time responsiveness, enhances privacy by keeping data local, and reduces
reliance on external networks. However, it faces challenges related to limited com-
putational resources, power constraints, and the need for model compression and
optimization techniques to fit within hardware capabilities.

• Cooperative inference splits computation between edge nodes and edge servers,
where lightweight processing occurs on the node while computationally intensive
tasks are offloaded to the edge server. This hybrid approach balances efficiency,
latency, and power consumption while leveraging strengths of both local and remote
computing. It is particularly beneficial for applications like autonomous vehicles
and smart surveillance. However, it introduces additional complexity in workload
partitioning and requires reliable network communication between edge node and
server.

Figure 3 illustrates the EI paradigm in autonomous vehicles, providing a clearer
depiction of the roles of edge devices, edge servers, and the cloud. Autonomous cars
perform real-time inference on-board using optimized DL models for tasks such as object
detection, lane keeping, and collision avoidance, ensuring rapid decision-making with min-
imal latency. However, for more computationally intensive tasks like high-resolution map
updates, predictive traffic analysis, and vehicle-to-everything (V2X) communication, the
vehicle offloads data to nearby edge servers. These edge servers aggregate and process data
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from multiple vehicles, enabling intelligent driving decisions based on shared situational
awareness. The edge servers also facilitate dynamic updates to high-definition maps by
integrating sensor data from multiple sources in real time. Finally, the edge servers connect
to the cloud, where large-scale data analytics, deep model retraining, and long-term traffic
pattern analysis are conducted. This hierarchical computing framework balances real-time
performance, computational efficiency, and data bandwidth while ensuring autonomous
vehicles operate safely and intelligently in diverse driving environments.

DSRC/V2V

DSRC/V2V

Edge computing platform

Edge server

V2X

High

resolution

map

Intelligent

driving

Cloud

Origin server

Connected cars

VCM

Video/Still image

5G

Network

Figure 3. Example of edge inference paradigm in autonomous vehicles. Abbreviations: DSRC = dedi-
cated short-range communications, V2V = vehicle to vehicle, VCM = video coding for machines, and
V2X = vehicle to everything.

This paper concentrates especially on inference directly on edge devices. The main
strategies for running DL models on resource-limited edge platforms include designing
efficient models, applying compression techniques, and utilizing hardware acceleration.
As DL models are typically designed for GPUs and TPUs, adapting them into smaller,
lightweight architectures or compression pre-trained networks poses significant challenges
for effective edge intelligence. Model design can be performed manually (based on experi-
ence) or automatically through neural architecture search (NAS). After designing the model,
compression techniques are applied to reduce its size in terms of parameters and com-
putation while maintaining acceptable performance. Inference is then executed through
a software–hardware co-design approach, where computationally intensive tasks are of-
floaded to hardware accelerators. This overall design process for inference on edge devices
is summarized in Figure 4.

Model design

Model compression

Acceleration

Inference on edge devices

• Design by experience

• Neural architecture search (NAS)

• Software acceleration

• Hardware acceleration

• Pruning

• Quantization

• MAC optimization

• Knowledge distillation

• Adaptive optimization

• Others
Co-design

Figure 4. The typical design process for inference on edge devices. Deep learning architectures
may be developed either through expert-driven design or automated neural architecture search.
These models undergo compression via standalone or combined techniques. Data processed at edge
devices is handled through both software and hardware accelerations. MAC stands for multiply–
accumulate operation.

2.1. Model Design for Edge Inference
2.1.1. Design by Experience

In CNNs, the majority of computational resources are consumed by convolution oper-
ations, making inference speed heavily dependent on how efficiently these convolutions
are performed. Designing compact and efficient architectures with fewer parameters and
operations is essential for improving performance on resource-limited edge environments.
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One common strategy involves replacing large convolution filters with multiple
smaller filters applied sequentially, which reduces computational complexity without
sacrificing accuracy. For example, MobileNet [14] and Xception [15] simplify convolutions
by extensively using 1 × 1 pointwise convolutions. MobileNet introduces two primary
optimizations: reducing input size and employing depthwise separable convolutions—a
combination of depthwise and pointwise convolutions—followed by average pooling and
a configurable dense layer. MobileNet’s depth multiplier allows for adjusting the number
of filters per layer. Depending on the variant, MobileNet configurations range from 0.5
to 4.2 million parameters and 41 to 559 million multiply–accumulate operations (MACs),
achieving 50∼70% accuracy.

MobileNetV2 [16] improves on this design by incorporating residual connections and
intermediate feature representations via a bottleneck residual block containing one 1 × 1
convolution and two depthwise separable convolutions. This approach reduces parameters
by 30% and computation by 50% relative to MobileNet, while increasing accuracy.

Similarly, SqueezeNet [17] compresses CNN channels using 1 × 1 convolutions and
introduces the “fire module”, which first squeezes inputs with 1 × 1 filters and then
expands with parallel 1 × 1 and 3 × 3 convolutions. SqueezeNet achieves a 50× reduction
in parameters compared to AlexNet [18] while maintaining comparable accuracy, though it
tends to consume more energy. It successor, SqueezeNext [19], replaces fire modules with
two-stage bottlenecks and separable convolutions, reaching 112× fewer parameters than
AlexNet with improved accuracy.

Other approaches focus on channel grouping and shuffling to reduce computation.
ShuffleNet [20] uses group convolutions combined with channel shuffling to improve
information flow, enhancing accuracy by 3% over MobileNet with similar complexity. Its
variant ShuffleNet Sx adds stride-2 convolutions, channel concatenation, and a scaling
hyperparameter for channel width. CondenseNet [21] extends this concept by learning
filter groups during training and pruning redundant parameters, achieving comparable
accuracy to ShuffleNet but with half the parameters. ANTNet [22] further advances group
convolution models by surpassing MobileNetV2 in accuracy by 0.8% while reducing
parameters by 6%, operations by 10%, and inference latency by 20% on mobile platforms.

From an algorithmic optimization standpoint, the Winograd algorithm [23] effectively
accelerates small-kernel convolutions and mini-batch processing by minimizing floating-
point and integer operations up to 2.25× [24] and 3.13× [25], respectively. It achieves this
through arithmetic transformations that leverage addition and bit-shift operations, which
are highly hardware-efficient. FPGA implementations of Winograd convolutions [26] utilize
line buffer caching, pipelining, and parallel processing to further speed up computation.

The UniWig architecture [27] integrates Winograd and GEMM-based operations within
a unified processing element structure to optimize hardware resource utilization. Addi-
tionally, weight-stationary CNNs benefit from reconfigurable convolution kernels [28],
which reuse weights to optimize LUT usage on FPGAs and reduce overall computational
demands.

Design by experience has proven effective in developing lightweight architectures
optimized for edge deployment. Although this approach often involves trade-offs among
complexity, energy efficiency, and accuracy, it provides practical solutions for real-time
inference on resource-limited devices. Collectively, hand-crafted designs form a solid foun-
dation for efficient edge intelligence. Figure 5 illustrates various convolution techniques
discussed above for compact CNN design, while Table 1 offers a summarized comparison
for quick reference.
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Figure 5. Illustration of various convolution types, including fire modules, bottleneck layers, residual
connections, channel shuffling, and depthwise separable convolutions. Abbreviations: Conv = convo-
lution, Concat. = concatenation.

Table 1. Summary of manually designed techniques for efficient edge deployment.

Technique Effectiveness Limitations Trade-Offs Edge Deployment

MobileNet
series

Compact and efficient;
accuracy 50∼70% for

MobileNet; improved in V2

Limited for
very-high-accuracy tasks Model size vs. accuracy Highly suitable; widely

adopted

Xception Efficient convolutions with
depthwise separable layers

Complex architecture
design

Efficiency vs. design
complexity

Suitable for edge with
careful tuning

SqueezeNet
series

Extreme parameter reduction
(50× to 112× smaller)

Higher energy
consumption

Model size vs. energy
usage

Suitable with
energy-aware hardware

ShuffleNet/
CondenseNet/

ANTNet

Improved accuracy and
speed through group

convolutions

More complex training;
specialized

implementation
Accuracy vs. latency Highly suitable

Winograd
algorithm

Up to 3.13× reduction in
computation

Limited to small kernels;
complex hardware logic

Hardware complexity vs.
speed

Highly suitable for
FPGA-/ASIC-based

accelerators

UniWig
architecture

Combines Winograd and
GEMM for better utilization

Requires advanced
hardware support

Hardware resource
efficiency vs. complexity

Suitable for specialized
FPGA/ASIC

Reconfigurable
kernels

Efficient weight reuse;
reduced LUT usage

FPGA-specific; complex
implementation

Hardware flexibility vs.
design complexity

Suitable for FPGA-based
accelerators

2.1.2. Neural Architecture Search

Neural architecture search (NAS) plays a crucial role in designing efficient DL models,
particularly for EI, where computational resources are limited. NAS automates the process
of discovering optimal neural network architectures, significantly reducing the reliance on
manual design and expert knowledge. The primary components of NAS include the design
domain, exploration strategy, and evaluation method. The design domain specifies the
range of permissible architectural components—such as layer types, connectivity patterns,
and hyperparameters. The exploration strategy determines how candidate architectures
are explored within the design domain, using methods such as reinforcement learning, the
evolutionary algorithm, or gradient-based optimization. Finally, the evaluation method
assesses the performance of candidate architectures, often using accuracy, latency, energy
consumption, or a multi-objective metric. Efficient NAS techniques aim to strike a balance
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between accuracy and computational efficiency, making them essential for deploying DL
models on resource-constrained edge devices.

MobileNetV3 [29], available in both large and small variants, was developed using
NAS and the NetAdapt [30] algorithm. As illustrated in Figure 6, NetAdapt is an adaptive
method that generates multiple candidate networks based on specific quality metrics. These
candidates are tested directly on the target hardware, and the one with the best accuracy
is selected. Compared to its predecessor, MobileNetV2, the large version of MobileNetV3
achieves a 25% performance boost without sacrificing accuracy, while the small version
improves accuracy by 6.6% with comparable model size and latency.

Pretrained 

network

Adapted 

network

Choose 

type of filters

Short-term 

fine-tune

•••

Choose 

type of filters

Short-term 

fine-tune

Target platform

(e.g., smartphone, smartwatch, etc.)

Layer 1

Select highest 

performance

Long-term 

fine-tune
Layer N

Over budgetChoose 

# of filters

Choose 

# of filters

Measure

Within budget

Figure 6. An illustration of the NetAdapt algorithm. At each step, it reduces resource usage by
pruning filters layer by layer, selects the variant with the highest accuracy, and fine-tunes the final
model once the target constraint is satisfied.

In NetAdapt, hardware costs associated with target platforms are treated as “hard”
constraints, meaning that the method solely maximizes model accuracy and, therefore,
cannot yield Pareto-optimal solutions. To address this limitation, a hardware-aware NAS
(HW-NAS) approach presented in [31] formulates a multi-objective optimization problem
considering both model accuracy and computational complexity (measured in FLOPs). This
optimization is solved using reinforcement learning (RL), where a neural network predicts
the performance of candidate architectures. The resulting solutions—represented as two-
objective vectors—are then evaluated against the true Pareto-optimal front to identify the
best network.

However, as shown in [32], FLOPs often poorly correlate with real-world latency, as
models with identical FLOPs can exhibit different latencies across platforms. To overcome
this limitation, MNASNet [33] incorporates measured inference latency—obtained by
evaluating candidate networks on actual mobile phones—into the objective function. The
reward function combines target latency, measured latency, and model accuracy using a
customized weighted product method. As a result, MNASNet achieves image classification
with only 78 ms latency, which is 1.8× faster than MobileNetV2 and 2.3× faster than
NASNet, while also improving accuracy by 0.8% and 1.2%, respectively.

In general, hardware constraints such as FLOPs and latency are not differentiable with
respect to model parameters, hindering the application of gradient-based search methods.
This constraint has led to the widespread use of RL-based searches in HW-NAS. FBNet [34]
addresses this by employing the Gumbel-Softmax function, making the joint accuracy–
latency objective function continuous and thus amenable to gradient-based optimization. In
FBNet, the latency of each candidate architecture is computed as the sum of its component
latencies, which are pre-stored in a look-up table. To reduce training overhead, candidate
models are trained on proxy datasets such as MNIST and CIFAR-10.
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While training on proxy datasets can reduce costs, it may not generalize well to large-
scale tasks. ProxylessNAS [35] mitigates this by enabling architecture search directly on
large-scale datasets and target hardware platforms. It adopts binarized paths to activate
and update only a single path during training, thereby minimizing memory usage. Further-
more, by modeling inference latency as a continuous function of architectural parameters,
ProxylessNAS facilitates efficient gradient-based search with rapid convergence.

Beyond gradient- and RL-based strategies, recent research [36] explores the use of
genetic algorithms for NAS. In this approach, the fitness function combines performance
estimation and hardware cost penalties. Performance is approximated by the similarity
between hidden layer representations of a reference model and those of candidate networks,
while hardware cost is represented by either FLOPs or latency. Experimental results demon-
strate significant improvements in efficiency, achieving a 40× reduction in search time and
a 54× decrease in CO2 emission compared to ProxylessNAS on the ImageNet dataset.

The integration of hardware constraints into NAS frameworks addresses the accuracy
degradation often observed when NAS-generated models are deployed across heteroge-
neous edge devices. In [37], this issue is tackled by the once-for-all (OFA) network. During
inference, only a selected sub-network within the OFA model is activated to process input
data. The training strategy optimizes the performance of all potential sub-networks by
dynamically sampling different architectural paths. A subset of these paths is then used to
train both accuracy and latency predictors. Based on a given hardware target and latency
constraint, RL-based architecture search is applied to identify an optimal sub-network. The
OFA model is structured into five sequential units with progressively decreasing feature
map sizes and increasing channel widths. Each unit supports configurations of two, three,
or four layers; each layer may contain three, four, or six channels and uses kernels of size
three, five, or seven. This configuration enables the generation of approximately 2 × 1019

sub-networks, all sharing the same weights (about 7.7 million parameters).
In summary, the evolution of HW-NAS techniques reflects a growing emphasis on jointly

optimizing model accuracy and deployment efficiency across diverse edge platforms. Early
approaches such as NetAdapt and MNASNet highlight the shift from theoretical metrics such
as FLOPs to real-world latency considerations. Subsequent methods—FBNet, ProxylessNAS,
and OFA—further advance this trend by integrating gradient-based optimization, large-
scale training, and flexible sub-network deployment. These developments demonstrate
that effective HW-NAS design must account for both hardware variability and scalability,
enabling practical and efficient AI deployment in resource-constrained environments.

2.2. Model Compression for Edge Inference
2.2.1. Pruning

Modern DL models are often heavily overparameterized. Pruning is an effective model
compression strategy that eliminates less critical weights or filters from a pre-trained network.
This process not only reduces memory requirements but also enhances inference speed.

Pruning methods are typically categorized into unstructured and structured types [38].
Unstructured pruning removes individual weights while keeping neurons active as long as
they maintain at least one remaining connection. For example, a sparsification method for
LSTM networks implemented on FPGAs [39] divides matrices into banks with an identical
number of non-zero elements, retaining larger weights to maintain accuracy. However,
unstructured pruning often leads to irregular memory access and computation patterns,
which can hinder hardware parallelism [39,40].

In contrast, structured pruning [41] removes entire groups of weights, such as adjacent
weights, sections of a filter, or even complete filters [42]. A structured pruning method
for CNNs [43] selectively removes filters to boost network efficiency without significant
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accuracy degradation. This technique trains an agent to prune layer by layer, retraining
after each pruning step before proceeding to the next layer. Structured pruning better
supports hardware acceleration by aligning with data-parallel architectures [44], improving
both compression rates and reducing storage demands.

Hybrid pruning combines both structured and unstructured approaches for optimized
hardware-friendly models. For example, one approach gradually removes a small portion
of the least significant weights from each layer, guided by a predefined threshold, and
follows up with retraining. Neurons that lose all connections are subsequently removed.
Weight pruning effectively compresses shallow networks without notable accuracy loss. An
iterative vectorwise sparsification strategy for CNNs and RNNs [40] shows faster responses
with negligible accuracy degradation, achieving 75% sparsity. However, filter pruning in
deeper networks tends to cause more significant accuracy drops.

Figure 7 illustrates various pruning methods and their impact on network structures.
Currently, there are three main strategies for creating sparse networks through pruning.

A. Magnitude-Based Approach: The contribution of each weight in a network is pro-
portional to its absolute value. To induce sparsity, weights below a predefined threshold
are removed. Magnitude-based sparsity not only reduces model size but also accelerates
convergence. In [45], a pruning strategy is applied incrementally across layers, where low-
magnitude weights are pruned and the model is retrained to recover lost accuracy. Over
several iterations, the remaining weights are fine-tuned. Using this approach, AlexNet
achieves a 9× reduction in weight count and a 3× reduction in MAC operations. The
pruning effect is more pronounced in fully connected layers—with reductions as high as
9.9×—compared to 2.7× in convolutional layers. Experimental results with AlexNet and
VGGNet [46] show that about 80% of weights can be pruned with fine-tuning and around
50% without it.

Dynamic pruning methods have also been explored. In [47], a dynamic pruning
approach reduces inference latency for transformer models on edge hardware. This method
decreases both MAC operations and tensor size while preserving up to 98.4% accuracy in
keyword spotting tasks. When tolerating up to 4% accuracy loss, the technique achieves
up to 94% reduction in operations and delivers up to 16× faster multihead self-attention
inference compared to a standard keyword transformer. Another example is ABERT [48],
a pruning scheme tailored for BERT models, which automatically discovers optimal sub-
networks under pruning ratio constraints. The deployment of the pruned network on a
Xilinx Alveo U200 FPGA yields a 1.83× performance gain over the baseline BERT model.

One key limitation of magnitude-based pruning lies in selecting an appropriate thresh-
old. Using a single threshold across all layers often leads to suboptimal results, as parameter
magnitudes vary between layers. While setting different thresholds per layer offers a so-
lution, it is difficult to implement. Differentiable pruning [49] addresses this limitation
by introducing a learnable pruning process. Additionally, [50] introduces a Taylor series-
based criterion to evaluate neuron importance in CNNs, formulating pruning as a joint
optimization task over both network weights and pruning decisions. Gate Decorator [51],
a global structured pruning method, scales channels in CNNs and removes filters when
their scaling factors drop to zero.

B. Regularization-Based Approach: These techniques incorporate a regularization
term into the loss function to enforce the desired level of sparsity [52]. As the model
trains, it gradually evolves toward a sparse sub-network that meets the targeted spar-
sity ratio while maintaining high accuracy. A primary benefit of regularization-based
approaches is that they preserve the integrity of the weights, resulting in better overall
accuracy. However, a key drawback is that these methods often require a large number of
iterations to fully converge.
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C. Energy-Based Approach: The technique introduced in [53] prunes weights based on
estimated energy consumption, factoring in the number of MAC operations, data sparsity,
and memory hierarchy movement. It achieves a 1.74× improvement in energy efficiency
on AlexNet when compared to traditional magnitude-based pruning.

A significant challenge with unstructured pruning is that it results in sparse weight
matrices, which complicates efficient hardware deployment. While this form of pruning
is generally more effective in fully connected layers, it does not always translate into
reduced latency. The irregular pattern of removed weights can hinder matrix multiplication
performance. Other limitations include limited transferability across model architectures,
inefficient on-chip memory access, a dependency on fine-tuning to recover accuracy, and
imbalanced computational workloads that reduce parallelism.

Zero-skipping techniques [54] attempt to bypass unnecessary multiplications involv-
ing zeros created by pruning. However, skipping zeros in weights and activations can lower
overall performance efficiency [55]. These methods also demand large on-chip memory
to fully leverage hardware parallelism. To address this, weights can be stored in a dense
format [56], reducing memory overhead. Map batching [57] further improves efficiency by
reusing kernels in dense layers, avoiding frequent transfers to external memory.

Despite their benefits, pruning entire filters or channels in CNNs often results in
substantial accuracy degradation. Therefore, CNNs are commonly compressed using
unstructured pruning, which creates sparsely populated weight tensors while preserving
the original network architecture.
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Figure 7. Visualization of different pruning methods: (a) Original set of weights. (b) Unstructured
pruning applied to lower half based on magnitude. (c) Structured pruning by removing 2 × 2 group
with smallest average. (d) Basic neural network before pruning. (e) Unstructured pruning of (d) by
removing 50% of weights. (f) Neuron pruning applied to network in (d).

D. Hardware Support for Structured and Unstructured Pruning: While pruning effec-
tively reduces model size and computation, its real-world impact on EI performance
depends on the underlying hardware’s ability to exploit sparsity. Edge accelerators such as
NPUs, FPGAs, and ASICs vary widely in their support for different sparsity patterns.

Structured pruning is typically more hardware-friendly because it preserves regularity
in memory access and computation. Removing entire channels or filters allows compilers to
simplify tensor shapes and generate optimized dense matrix operations without requiring
major changes in the hardware pipeline. In contrast, unstructured pruning, which removes
individual weights, often results in irregular memory access and control flow. Exploiting
such sparsity demands dedicated support, such as sparse matrix storage, zero-skipping
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hardware, or specialized sparse compute units. These features are not widely available in
most edge devices.

Table 2 summarizes how structured and unstructured sparsity are supported across rep-
resentative edge accelerators. Given these trends, recent work emphasizes hardware-aware
pruning, which aligns pruning granularity with accelerator architecture. Co-design efforts
such as SCNN [58], EyerissV2 [59], and Cambricon-S [60] demonstrate how custom accelera-
tors can natively support block- or vector-level sparsity, balancing flexibility and performance.
However, these designs are yet to be widely adopted in commercial edge hardware.

Table 2. Comparison of hardware support for sparsity patterns on edge accelerators. NA stands for
not available.

Sparsity Type Accelerator Hardware Support Latency Benefit Energy Efficiency Remarks

Structured

NVIDIA Jetson TensorRT [61] with channel pruning Moderate Moderate Works well with fused layers and dense GEMMs
Google Edge TPU Filter pruning support High High Prefers regular conv a shapes, no dynamic sparsity

ARM Ethos-U Native pattern support High High Integrates well with CMSIS-NN pruning methods [62]
Xilinx FPGA Manual scheduling High Very high Custom dataflow optimizations possible

Unstructured

NVIDIA Jetson Sparse GEMM via cuSPARSE [63] Limited Slight Irregular compute, limited speedup without 2:4 support
Google Edge TPU No direct support Negligible Negligible Requires retraining for structured sparsity

ARM Ethos-U Unsupported NA NA Compilation fails without dense fallback
Xilinx FPGA Sparse matrix engines Moderate Moderate Requires high memory bandwidth, controller overhead

a Convolutional layers.

2.2.2. Quantization

Most DL models rely on floating-point representations for weights and activations,
which preserve detailed information but significantly slow down processing. However, as
DNNs are designed to capture key features and are inherently robust to small variations,
they can tolerate minor errors introduced by quantization. Quantization reduces the
precision of model parameters and activations, minimizing the demand for high-cost
floating-point operations. By decreasing the bit width, quantization enables faster and
more efficient integer-based computations in hardware.

Quantization provides three main advantages: (i) it reduces memory consumption
by representing data with fewer bits; (ii) it simplifies computations, leading to faster
inference times; and (iii) it boosts energy efficiency. Data can be quantized either linearly or
nonlinearly, and the bit width used for quantization can be fixed across the model or vary
between layers, filters, weights, and activations. In fixed-bit quantization, a uniform bit
width is applied across the network, whereas variable quantization allows different parts
of the network to use different precisions.

Replacing 32-bit single-precision floating-point (FP32) operations with lower-precision
formats—such as half-precision (FP16 [64]), reduced-precision (FP8 [65]), or fixed-point
representations [66]—greatly simplifies DL computations. For example, 8-bit integer (INT8)
addition and multiplication can be 3.3× and 15.5× more energy-efficient than 32-bit equiv-
alents [67]. As a result, AlexNet can achieve under 1% accuracy loss [68] when reduced
to 4∼9 bits. Prior work has shown that using 8-bit activations and weights can deliver a
3∼4× memory reduction and a 10× speedup without accuracy degradation [69,70].

Table 3 summarizes representative quantization methods, categorized by precision
type—fixed-point, floating-point, variable, reduced, and nonlinear. Fixed-point methods
such as weight fine-tuning [71] and contrastive-calibration [72] balance accuracy and sim-
plicity, showing only 0.6∼2.3% top-1 accuracy loss. Floating-point methods (for example,
FP8 [73]) outperform the traditional INT8 quantization with less than 1% accuracy drop
while supporting a wider range of quantized operations. Variable precision schemes such
as Stripes [74] and Bit Fusion [75] provide bit-level flexibility but lack clear reports on
accuracy metrics. Reduced precision approaches, including BinaryNet [76] and XNOR-
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Net [77], drastically lower bit widths to 1∼2 bits, gaining speedups at the cost of significant
accuracy loss (up to 18.1%). Nonlinear methods such as Incremental Network Quantization
(INQ) [78] and Deep Compression [79] use weight clustering and pruning strategies to
achieve compression with minimal accuracy degradation.

Table 3. A summary of representative studies on the quantization of deep learning models. FP32
denotes the 32-bit floating point representation, NA stands for not available, QAT is the abbreviation
for quantization-aware training, and PTQ represents post-training quantization.

Quantization Technique Model/Method
Bit Width Top-1 Accuracy Drop Calibration

Weights Activations on ImageNet a Complexity

Fixed-point precision
Weight fine-tuning [71] 8 8 0.6∼2.3% QAT

Contrastive-calibration [72] 2, 4 2, 4 1.6% PTQ

Floating-point precision FP8 [73] 8 8 −0.15∼0.11% PTQ

Variable precision

Stripes [74] 16 1∼16 NA NA
UNPU [80] 1∼16 16 NA NA
Loom [81] 1∼16 1∼16 NA NA

Bit Fusion [75] 1, 2, 4, 8, 16 1, 2, 4, 8, 16 NA NA
BitBlade [82] 1, 2, 4, 8, 16 1, 2, 4, 8, 16 NA NA

Reduced precision

BinaryConnect [83] 1 FP32 NA QAT
Ternary Weight Network [84] 2 b FP32 2.3% QAT

Trained Ternary Quantization [85] 2 b FP32 −0.3∼1% QAT
XNOR-Net [77] 1 b 1 b 18.1% QAT
BinaryNet [76] 1 1 NA QAT

DoReFa-Net [86] 1 b 2 b 3.3% QAT
Quantized Neural Network [87] 1 2 b 5.2∼5.57% NA

HWGQ-Net [88] 1 b 2 b 5.8∼8.4% QAT
SmoothQuant [89] 8 8 NA PTQ

PD-Quant [90] 2, 4 2, 4 1.29% PTQ

Nonlinear quantization
Incremental Network Quantization [78] 5 FP32 −1.59∼− 0.13% QAT

Deep Compression [79]
8 (conv c), 4 (dense d) 16 0.01% NA

4 (conv), 2 (dense) 16 1.99% NA

a The quantized model’s performance is compared with that of the FP32 implementation. b FP32 for the first and
last layers. c Convolutional layers. d Fully connected layers.

Binary networks represent an extreme form of quantization, replacing multiplications
with 1-bit XNOR operations. Techniques such as BinaryConnect [83] and BinaryNet [76]
compress model size up to 32× and enable fast inference but suffer from large accuracy
drops on complex datasets. To mitigate this, DoReFa-Net [86], QNN [87], and HWGQ-
Net [88] use hybrid precision strategies, maintaining 1-bit weights with multi-bit activa-
tions. Ternary quantization methods such as the Ternary Weight Network [84] and Trained
Ternary Quantization [85] introduce a zero weight level to reduce information loss, achiev-
ing accuracy drops ranging from −0.3% to 2.3%, where the negative value denotes an
improvement over the full-precision baseline.

The reduced precision methods discussed above follow the quantization-aware train-
ing (QAT) strategy, which requires retraining the quantized model and is therefore time-
consuming. An alternative approach is post-training quantization (PTQ), as demonstrated
by SmoothQuant [89] and PD-Quant [90]. PTQ methods eliminate the need for retraining;
instead, they rely on calibration using a small set of data samples. SmoothQuant enhances
INT8 quantization for large language models by smoothing weight and activation dis-
tributions, achieving negligible accuracy loss without fine-tuning. PD-Quant introduces
a prediction difference-based calibration approach tailored to ultra-low precision (2-bit)
quantization, yielding a top-1 accuracy loss of only 1.29% for extreme bit widths.

Hardware-friendly designs such as Stripes [74] and Loom [81] use bit-serial operations
to reduce power by substituting multipliers with AND gates and adders. UNPU [80] lever-
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ages 1∼16-bit weights with fixed activations, while Loom applies serial quantization for
both trading latency for hardware efficiency. Bit Fusion [75] dynamically fuses processing
elements to match operand bit widths, while BitBlade [82] removes shift–add overhead
using direct bitwise summation.

Nonlinear quantization techniques exploit weight and activation distributions to mini-
mize quantization error, often using logarithmic spacing or lookup tables. INQ [78] applies
iterative quantization with retraining to preserve performance, while Deep Compression [79]
clusters and prunes weights for minimal accuracy degradation. These methods are especially
effective for edge deployment due to their low calibration needs and robust accuracy.

While binarization suits small datasets or neuromorphic chips, it remains challenging
for large-scale tasks due to accuracy loss. Accuracy improvements often rely on keeping
the first and last layers in higher precision or combining multiple quantization strategies.

Quantization has also been extended to RNNs and Transformers. SpeechTrans-
former [91] and vision transformers [92] benefit from integer-only quantization, achieving
4× reductions in parameter count and 4.11× inference speedups. Despite these advantages,
quantization introduces trade-offs including precision loss, architectural constraints, and
gradient computation challenges. Moreover, quantized models have been shown to be
more vulnerable to distribution shifts compared to their full-precision counterparts [93].
This vulnerability, however, can be mitigated through carefully designed post-training
quantization strategies.

In summary, quantization remains a powerful tool for model optimization, with
various techniques offering distinct trade-offs. Table 3, along with the accompanying
comparison and deployment analysis, offers a roadmap for selecting suitable methods
based on accuracy, hardware efficiency, and deployment constraints.

2.2.3. Multiply-and-Accumulate Optimization

Multiplication operations account for a substantial portion of the computational
burden in DL algorithms, particularly during inference. Therefore, techniques that reduce
or eliminate multiplications can dramatically improve efficiency—especially in resource-
limited edge environments.

One effective approach is DiracDeltaNet [94], which replaces spatial convolutions
with lightweight shift operations and depthwise convolutions followed by efficient 1 × 1
convolutions. This strategy reduces the parameter count by a factor of 48× and the number
of operations by 65× for the VGG-16 model, while maintaining competitive accuracy on
the ImageNet benchmark. Its structured pruning and minimal reliance on multiplications
make it particularly appealing for FPGA-based deployments.

A more radical strategy is proposed in [95], where all multiplications and nonlinear
functions are precomputed and stored in LUTs. During inference, the model relies solely
on fixed-point additions and table indexing. Activation functions are replaced with quan-
tized approximations. This technique eliminates floating-point operations entirely, achieving
extremely low computational overhead. However, it comes at the cost of potentially large
memory requirements due to LUT size, which may limit scalability for more complex models.

In contrast, the Alphabet Set Multiplier (ASM) introduced in [96] reduces multi-
plication cost by reusing partial products. It precomputes a compact set of “alphabets”
(small multiplication results), which are then dynamically combined using shifters, adders,
and selection units to reconstruct full multiplications. ASM is particularly effective for
fixed-weight models, where computation can be shared across multiple operations. This
method strikes a balance between efficiency and accuracy, making it a strong candidate for
embedded systems and ASIC-based deployments.
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For edge deployment, DiracDeltaNet [94] offers the best overall balance of perfor-
mance, hardware simplicity, and model accuracy. However, for applications requiring
extremely low power consumption and where memory is not a bottleneck, the LUT-based
approach [95] may be preferable. ASM [96] is ideal in scenarios where custom hardware
design is feasible and shared computation can be exploited.

2.2.4. Knowledge Distillation

Knowledge distillation (KD) is a widely used model compression strategy that enables
a lightweight DL model to emulate the behavior and performance of a larger, more accurate
model [97]. This typical setup includes a teacher–student paradigm, where a large, high-
capacity teacher network guides the training of a smaller student model designed for
efficient inference on constrained hardware platforms. An overview of this process is
shown in Figure 8.

Teacher model
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Softmax

𝜌 > 1

Softmax

𝜌 > 1

Softmax

𝜌 = 1

Soft labels

Soft predictions

Distillation loss

Hard predictions Student loss

Data

Labels

Dark knowledge
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Figure 8. Illustration of knowledge distillation. ρ denotes the softmax temperature.

The essence of KD lies in transferring learned representations from teacher to student
via a carefully designed loss function. Originally proposed in [98] and extended in [99],
the approach often involves the student learning to match the teacher’s softmax output
probabilities, which provide richer supervision than hard labels. For example, in speech
recognition tasks, KD has yielded a 2% increase in accuracy, enabling the student to ap-
proach the performance of a large ensemble of teacher models. Beyond soft labels, KD
techniques have evolved to incorporate internal features—such as intermediate activa-
tions [100], neuron outputs [101], or feature maps [102]—which help the student to gain
deeper insights from the teacher’s representations.

Numerous strategies have emerged to tailor student model architecture for edge de-
ployment. For example, DeepRebirth [103] compresses networks by merging convolutional
layers with adjacent non-parametric layers (such as pooling and normalization), followed
by layerwise fine-tuning, resulting in a 3× speedup and 2.5× reduction in memory usage.
In contrast, Rocket Launching [104] synchronously trains teacher and student networks to
accelerate convergence, reducing training overhead.

In natural language processing (NLP) for edge environments, KD has proven highly
effective. For example, TinyBERT [105], a distilled version of BERT, retains 96.8% of the
original accuracy while shrinking the model size by 7.5× and speeding up inference by
9.4×. Similarly, sentence-level distillation techniques [106] have enabled the creation of
lightweight sentence transformers that maintain competitive performance.

Student model design can also trade off width for depth, as in FitNets [102], where
a deeper, narrower student learns from intermediate hints provided by the teacher. This
setup matches the teacher’s performance on CIFAR-10 while benefiting from reduced
model size and increased inference speed.
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Further developments include mutual learning [107] (students co-learn), teacher–
assistant frameworks [108] (a multi-stage distillation process), and self-distillation [109]
(models teach themselves using their own past outputs). KD has even been extended to
dataset distillation, where small synthetic datasets replicate the training behavior of full
datasets, significantly reducing training cost and data storage needs [110,111].

Among the KD-based methods, TinyBERT [105] stands out as the most suitable for
edge deployment in NLP tasks, offering a compelling balance between size, speed, and
accuracy. In vision tasks, DeepRebirth [103] and FitNets [102] provide efficient alternatives
with strong inference performance and low overhead. Nevertheless, care must be taken
when deploying KD-trained models across edge environments due to their sensitivity
to distribution shifts and reliance on teacher-specific behavior. However, KD remains a
powerful and versatile compression technique, particularly when inference efficiency and
model compactness are paramount.

2.2.5. Adaptive Optimization

Adaptive DL compression techniques dynamically adjust computational workloads
during inference in response to the complexity of each input, enhancing efficiency while
preserving performance. Unlike static compression methods such as quantization, pruning,
or knowledge distillation—which apply uniform reductions regardless of input difficulty—
adaptive approaches dynamically adjust computation to suit varying inference demands.
For example, processing a simple background frame in a surveillance video requires far
less computation than detecting objects in a crowded scene. Similarly, basic sentence
comprehension in NLP may not demand full model depth compared to syntactically
ambiguous inputs.

One such technique is frame skipping in video analysis. NoScope [112] employs a
lightweight difference detector to identify significant changes between consecutive frames,
allowing the system to bypass redundant computations when frames are similar. This
approach has achieved up to 15.5× speedup in binary classification tasks over fixed-angle
webcam and surveillance video while maintaining accuracy within 1∼5% of state-of-the-art
networks.

Another method involves using dual-model systems comprising a “small” and a
“large” network [113]. The small model processes inputs first, and if its confidence in the
prediction is high, the result is accepted. If not, the input is passed to the larger, more
complex model for further processing. This strategy can lead to significant energy savings,
up to 94.1% in digit recognition tasks, provided the larger model is infrequently activated.

Early exiting (illustrated in Figure 9a) is a technique where intermediate classifiers are
added to a DNN, allowing the model to terminate inference early if a confident prediction
is made at an earlier stage. BranchyNet [114] is an implementation of this concept, adding
multiple exit points to the base network and using entropy of the softmax output to
decide whether to exit early or continue processing. This method reduces latency and
computational load, especially when deeper layers are seldom needed.

Extending early exiting to distributed systems, DDNNs [115] incorporate exit points
at various levels, such as cloud, edge server, and end-device. This hierarchical approach
allows for efficient processing by exiting at the most appropriate level based on the input’s
complexity. Similarly, DeepIns [116] applies this concept in industrial settings, collecting
data via edge sensors and determining processing at the edge or cloud level based on
confidence scores.

SkipNet [117] (illustrated in Figure 9b) introduces skippable tiny NNs, or gates, within
the architecture, enabling the model to bypass certain layers during inference based on input
characteristics. This dynamic routing conserves computational resources with minimal
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impact on accuracy. In practical applications, such as smart assistants and wearable devices,
hierarchical inference is employed where a lightweight model handles initial processing,
and more complex analysis is offloaded to cloud-based models as needed [118,119].
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Figure 9. An illustration of the early exiting technique (a) and the SkipNet architecture (b).

Table 4 summarizes representative adaptive model compression methods, highlighting
their design objectives, underlying architectures, compression techniques, performance
outcomes (lossless, lossy, or enhanced), and experimental results. Table 5 lists popular
lightweight DL models and compares them in terms of parameter count and computational
cost, most of which stem from applying such compression methods to large-scale DL
models.

Adaptive compression methods offer a nuanced and intelligent approach to opti-
mizing inference workloads, with each method presenting a distinct balance between
computational efficiency and accuracy retention:

• Most energy-efficient: Dual-model systems [113] and early exiting methods [114,115]
stand out, offering substantial energy savings with little accuracy compromise.

• Best for latency-sensitive edge deployment: SkipNet [117] and BranchyNet [114]
reduce unnecessary computation in real time, making them well-suited for wearable
devices and real-time analytics.

• Most suitable for dynamic environments: DDNNs [115] offer scalable, hierarchical
processing ideal for industrial and IoT scenarios, albeit with increased system com-
plexity.

Overall, early exiting such as in BranchyNet [114] emerges as a balanced choice for
edge deployment, combining low latency, energy savings, and minimal accuracy loss,
especially when computation budgets vary with input complexity.

2.3. Sparsity Handling for Efficient Edge Inference

Pruning has been shown to eliminate over 90% of weights in dense layers and about 60%
in convolutional layers of typical models, leading to a substantial weight sparsity [45]. Even
compact models such as MobileNetV2 [16] and EfficientNet-B0 [120] benefit substantially,
achieving 50∼93% sparsity, translating into 2.5× to 4.2× reductions in MACs [121]. In
natural language processing, pruning large-scale models such as Transformer [122] and
BERT [123] yields 80% [124] and 93% [125] sparsity, respectively, enabling 4.8× to 12.3×
reductions in MACs. For example, SpAtten [126] exploits structural sparsity in attention
mechanisms to reduce both computation and memory access by 3.8× and 1.1×, respectively.

Recurrent models such as GRU [127] and LSTM [128] also respond well to pruning,
tolerating over 80% weight sparsity with negligible accuracy loss. Techniques such as
MASR [129] introduce activation sparsity of approximately 60% by modifying normaliza-
tion schemes, while DASNet [130] leverages dynamic sparsification to reduce MACs by
27% in AlexNet and 12% in MobileNet, incurring less than 1% accuracy loss.
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Table 4. Summary of representative model compression techniques. ↑ and ↓ denote “increase” and
“decrease”, respectively.

Type Technique Base Model Objective Results Ref.

Lossy

Binarization AlexNet Speedup, model size ↓ 58× faster, 32× smaller [77]
Pruning AlexNet Energy ↓ 3.7× energy ↓ [53]
Pruning VGG-16 Speedup 10× faster [50]
Pruning NIN Speedup 1.24× faster [131]

Low-rank approximation VGG-S Energy ↓ 4.26× energy ↓ [132]
Low-rank approximation CNN Speedup 2× faster [133]
Low-rank approximation CNN Speedup 4.5× faster [134]

Knowledge distillation GooLeNet Speedup, memory ↓ 3× faster, 2.5× memory ↓ [103]
Memory access

optimization VGG Power, performance
trade-off 83% accuracy [135]

Lossless

Pruning, quantization,
Huffman coding VGG-16 Model size ↓ 49× smaller [79]

Pruning VGG Computation ↓ 5× computation ↓ [136]
Pruning AlexNet Memory ↓ 13× memory ↓ [45]

Compact network design AlexNet Model size ↓ 50× smaller [17]
Kernel separation,

low-rank approximation
AlexNet,

VGG Speedup, memory ↓ 13.3× faster, 11.3×
memory ↓ [137]

Low-rank approximation VGG-16 Computation ↓ 9× computation ↓ [138]
Knowledge distillation WideResNet Memory ↓ 40% memory ↓ [139]
Adaptive optimization MobileNet Speedup 1.7× faster [140]

Enhanced

Quantization Faster R-CNN Model size ↓ 4.16× smaller [70]
Pruning ResNet Speedup 20× faster [141]

Compact network design SqueezeNet Model size ↓ 5.17× smaller [142]
Compact network design YOLOv2 Speedup, model size ↓ 34% faster, 15.1× smaller [143]

Knowledge distillation ResNet Accuracy ↑ 1.1% ↑ [144]
Knowledge distillation,

regularization NIN Memory ↓ 32.28× memory ↓ [145]

Dataflow optimization DNN Speedup, energy ↓ 58× faster, 104× energy ↓ [146]

Table 5. Summary of representative lightweight models, sorted by number of operations.

Model Weight Count (millions) Operation Count (billions)

MobileNetV3-Small [29] 2.9 0.11
MNASNet-Small [33] 2.0 0.14

CondenseNet [21] 2.9 0.55
MobileNetV2 [16] 3.4 0.60

ANTNets [22] 3.7 0.64
NASNet-B [147] 5.3 0.98

MobileNetV1 [14] 4.2 1.15
PNASNet [140] 5.1 1.18

SqueezeNext [19] 3.2 1.42
SqueezeNet [17] 1.25 1.72

In CNNs, sparsity is also induced during both training and inference stages. For
example, MobileNetV2 [16] can skip 20% of MACs due to activation sparsity. Overall,
pruning can lead to 40∼50% MAC reductions and significant energy savings, especially
when paired with sparsity-aware hardware [148].

2.3.1. Hardware Implications: Static versus Dynamic Sparsity

Pruning methods require hardware accelerators that can effectively exploit sparsity,
which can be structured or unstructured and processed using static or dynamic techniques:
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• Static sparsity: Devices such as Cambricon-X [149] pre-identify zero weights during
training and store their locations alongside indices, enabling efficient skipping of use-
less computations. However, these devices often require complex memory indexing
that limits their real-time adaptability.

• Dynamic sparsity: Accelerators such as ZENA [150], SNAP [151], and EyerissV2 [59]
detect and process non-zero elements at runtime. While more flexible, they require
sophisticated control logic, increasing hardware complexity and potentially raising
latency if no optimized properly.

Structured sparsity, such as block sparsity [152] or vectorwise block sparsity [153],
alleviates indexing challenges by grouping non-zero elements under shared indices. This
improves processing element (PE) utilization and memory bandwidth, offering a better
trade-off between compression and hardware simplicity.

2.3.2. Neuron-Level Sparsity and Selective Execution

Neuron-level pruning focuses on reducing unnecessary computation by skipping the
evaluation of less important neurons. Techniques presented in [154,155] identify negative
pre-activations (rendered null by ReLU) early in the pipeline or use predictors to compute
only selective neuron outputs. Coupled with bit-serial processing, these techniques allow
adaptive precision and reduce power consumption per operation.

Some systems integrate dual sparsity, leveraging both weight and neuron-level sparsity
simultaneously for maximum reduction in workload, as demonstrated in [58,60,156].

2.3.3. Sparse Weight Compression and Memory Efficiency

Efficient coding of sparse parameters is critical for minimizing memory access over-
head [79]:

• Compressed Sparse Row (CSR) and fn (CSC) formats are common. CSC, as used in
EyerissV2 [59] and SCNN [58], offers better memory coalescing and access patterns
than CSR [157].

• EIE [156] and SCNN [58] handle compressed dense and convolutional layers, respec-
tively, using address-based MAC skipping and interconnection meshes for partial sum
aggregation.

• Cnvlutin [158] and NullHop [159] focus on activation compression, using formats
such as Compressed Image Size (CIS) and Run-Length Coding (RLC) to reduce both
computation and data movement.

The UCNN accelerator [160] generalizes sparsity beyond zeros and reusing repeated
weights, not only reducing memory usage but also minimizing redundant computation,
which is an essential trait for edge-oriented accelerators.

2.3.4. Conclusions

Pruning, in all its forms, offers substantial gains in computation and energy savings.
However, structured pruning with hardware-aware block sparsity and sparse weight com-
pression using a CSC format provide the best balance between efficiency and deployability
on edge platforms. These methods reduce memory usage and computational cost while
simplifying accelerator design, unlike unstructured pruning, which poses challenges in
memory access and load balancing.

For edge deployment, structured block sparsity combined with lightweight hardware
accelerators—such as EyerissV2 [59] and SCNN [58]—is the most suitable approach, de-
livering consistent performance gains with minimal hardware complexity and excellent
energy efficiency.
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3. Software Tools and Hardware Platforms for Edge Inference
3.1. Software Tools
3.1.1. Compression–Compiler Co-Design

Compression-compiler co-design has recently gained momentum as a promising
approach to boost EI performance on general-purpose edge devices. This method synergis-
tically combines DL model compression with compiler-level optimization, enabling more
efficient deployment by reducing model footprint and accelerating inference. By translating
high-level DL constructs into hardware-efficient instructions, compilers play a pivotal role
in optimizing runtime performance.

Although this co-design paradigm remained underexplored for some time, recent ad-
vancements have demonstrated its potential to significantly improve energy efficiency and
reduce latency. Notable examples include PCONV [161], PatDNN [162], and CoCoPIE [163],
all of which jointly explore model compression and compiler design. In the compression
phase, structured pruning is used to produce hardware-friendly weight patterns. Dur-
ing compilation, instruction-level and thread-level parallelism are harnessed to generate
optimized executable code.

MCUNet [164] exemplifies this integration by combining compact model architectures
with compiler optimizations that eliminate redundant instructions and memory accesses.
Similarly, CoCoPIE introduces a specialized software framework that co-optimizes pruning
and quantization in tandem with compiler behavior. As shown in Figure 10, CoCoPIE
introduces a custom intermediate representation (IR) that explicitly encodes compression
patterns—particularly structured sparsity—during the compilation phase. This IR captures
both data-level and compute-level sparsity patterns and feeds them into downstream
scheduling and code generation stages.
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Figure 10. Illustration of compression–compiler co-design framework used in CoCoPIE [163].

CoCoPIE’s IR is designed to preserve and exploit structured pruning decisions made
during model compression. Each convolutional or matrix multiplication layer is associated
with metadata that encodes

• Pruning masks or block patterns, such as 2D pruning windows;
• Retained kernel/channel indices for efficient memory access;
• Execution hints that guide instruction selection and tiling strategies.

During compilation, these annotations inform a custom scheduling engine that avoids
loading or executing pruned weights, eliminating redundant memory fetches and arith-
metic operations. The IR supports composability, allowing the compiler to treat a CNN as a
sequence of reusable, pruned building blocks. This representation facilitates hierarchical
compression and enables pattern-matching passes for aggressive optimization, such as
fusing pruned layers or collapsing zero-weight regions during register allocation.

The CoCoPIE framework consists of two key modules:
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• CoCo-Gen performs structured pruning and generates pruning-aware IR with meta-
data on weight masks and instruction patterns. It emits executable code tailored to
the micro-architecture of the target device.

• CoCo-Tune accelerates pruning by leveraging the composable IR to identify reusable,
sparsity-inducing patterns. It performs coarse-to-fine optimization using building
blocks drawn from pre-trained models, significantly reducing retraining cost.

Results reported for a commercial platform (Snapdragon 858) have demonstrated the
superiority of CoCoPIE over baseline compilers such as TVM [165], TensorFlow-Lite, and
MNN [166] across representative models, including VGG-16, ResNet-50, and MobileNetV2.
Regarding execution time on a CPU, CoCoPIE exhibits 2.3∼8.1× speedup over TVM,
12∼44.5× over TensorFlow-Lite, and 1.9∼15.5× over MNN, respectively. On a GPU,
CoCoPIE is 4.1∼14.4×, 2.5∼20×, and 2.5∼6.2× faster than TVM, TensorFlow-Lite, and
MNN, respectively. In terms of energy efficiency, CoCoPIE is 6.29× more efficient than
Eyeriss [167].

In summary, compression–compiler co-design is emerging as a powerful approach to
achieve energy-efficient, high-performance DL inference on everyday edge devices.

3.1.2. Algorithm–Hardware Co-Design

The hardware-based execution of DNN algorithms for efficient inference continues
to draw significant research interest. This growing focus on customized hardware stems
from two main factors: (i) the performance of conventional hardware is approaching its
limits, and (ii) integrating compression techniques into hardware offers a promising path
to handle the rising computational demands. At the core of this shift lies the concept of
algorithm–hardware co-design. A general overview of this co-design approach is depicted
in Figure 11.
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Figure 11. An overview of the algorithm–hardware co-design approach. Model selection and training
are performed using any machine learning framework. The trained model is subsequently refined
through an edge-optimized intermediate software layer before being deployed on the designated
edge device.

The process begins with developing the algorithm within standard ML frameworks.
Once optimal models are trained, an edge-specific intermediate software layer optimizes
them for deployment. These optimized models are then executed on the target hardware
to accelerate inference. Algorithm-level optimizations guide the hardware design, while
hardware implementation provides valuable feedback to refine algorithm development
further. This bidirectional interaction defines algorithm–hardware co-design as a promising
direction for creating application-specific DNN accelerators tailored for edge environments.
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3.1.3. Efficient Parallelism

Parallelization techniques are key to accelerating DL inference by efficiently utiliz-
ing underlying hardware resources. This strategy distributes workloads across multiple
processing units, improving both latency and throughput. CNNs and RNNs, due to their
inherently repetitive computations, particularly benefit from such parallel execution on
platforms such as CPUs, GPUs, and DSPs [168].

For example, CNNdroid [169], a GPU-based deep CNN inference engine tailored for
Android devices, delivers up to 60× speedup and 130× energy savings, highlighting the
performance gains of mobile GPU acceleration. However, GPU-based parallelization, while
effective, poses challenges in energy-limited environments and often demands complex
hardware-specific tuning, especially when deploying on heterogeneous systems with tight
thermal budgets.

CUDA, NVIDIA’s parallel computing platform, enables fine-grained control over GPU
threads and memory hierarchy, making it ideal for performance-critical applications such as
real-time object detection and robotic navigation [170]. However, applying CUDA directly
to mobile GPUs often results in suboptimal efficiency due to architectural limitations and
limited thermal headroom [171]. As a more portable alternative, RenderScript [172]—a
high-level framework for Android—automatically maps data-parallel tasks to available
GPU cores. Using this abstraction, SqueezeNet achieves over 310× speedup on a Nexus 5
smartphone, illustrating the software simplicity and deployment ease of RenderScript at
the cost of reduced hardware-level optimization flexibility compared to CUDA.

In contrast, Cappuccino [173] focuses on automated model deployment for EI. It
breaks down neural operations across kernels, filters, and output channels, promoting
parallel computation with minimal manual intervention. While this approach enhances
developer productivity and ensures reasonable energy efficiency, it may introduce slight
numerical deviations due to approximation during parallel execution.

DeepSense [174] represents another GPU-accelerated inference solution designed for
mobile environments, assigning heavy computation layers to the GPU while the CPU han-
dles lighter tasks such as padding and memory operations. However, mobile GPUs’ limited
memory bandwidth and storage often restrict support for larger CNN architectures [175].
A practical workaround, demonstrated using YOLO on the Jetson TK1, involves splitting
workloads between CPU and GPU. This hybrid setup can still yield up to 60× inference
acceleration, though it requires careful synchronization and resource management [176].

To further reduce computational cost, DeepX [177] applies singular value decom-
position to compress weight matrices and shrink neural layers. This not only reduces
model size but also facilitates parallel processing of compressed layers, improving both
execution speed and energy efficiency. The DeepX Toolkit (DXTK) [178] generalizes this
concept, enabling broad compatibility across model types and making it a robust solution
for scalable, resource-limited edge platforms.

Among the evaluated methods, DeepX and DXTK stand out as the most edge-friendly
solutions due to their balanced design: they offer significant energy savings, require minimal
manual tuning, and support parallel inference across compact networks. Their compatibility
with compressed models further makes them well-suited for battery-powered and thermally
constrained devices. In contrast, while CUDA-based implementations offer granular perfor-
mance control, their higher hardware and development complexity make them less ideal for
general-purpose edge deployment without dedicated optimization efforts.

3.1.4. Memory Optimization

Deep learning inference relies heavily on computation-intensive MAC operation, each
necessitating three memory reads (weights, input activations, and partial sums) and one
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write to update results. This frequent memory access becomes a critical performance
bottleneck, particularly for edge devices where energy efficiency and low latency are
paramount. To address this challenge, most DNN accelerators adopt a hierarchical memory
architecture (illustrated in Figure 12), consisting of

• Off-chip DRAM, which stores the bulk of model parameters and intermediate data;
• On-chip SRAM-based global buffers (GLBs), which cache activations and weights

temporarily;
• Register files (RFs) embedded within each PE, providing the fastest and lowest-power

memory access.

While DRAM offers large capacity, it is the most energy-intensive component. In
contrast, on-chip memories provide faster access at significantly lower power, but their
capacity is limited. As such, optimizing memory access patterns to minimize DRAM usage
and maximize on-chip reuse is essential for EI.

A. Dataflow Strategies for Memory Reuse: Efficient data reuse strategies can drasti-
cally reduce memory traffic and energy consumption. Four common dataflow schemes, as
summarized in Table 6, are widely employed in DL accelerators:

• Weight Stationary (WS): This strategy keeps weights fixed in RFs while streaming
activations across PEs, significantly reducing weight-fetch energy. WS is well-suited
for convolutional layers with high weight reuse. For example, NeuFlow [179] applies
WS for efficient vision processing. However, frequent movement of activations and
partial sums may still incur moderate energy costs.

• No Local Reuse (NLR): In this scheme, neither inputs nor weights are retained in local
RFs; instead, all data are fetched from GLBs. While this simplifies hardware design and
supports flexible scheduling, the high frequency of memory access limits its energy
efficiency. DianNao [180] follows this approach but mitigates energy consumption by
reusing partial sums in local registers.

• Output Stationary (OS): OS retains partial sums within PEs, allowing output activa-
tions to accumulate locally. This reduces external data movement and is particularly
beneficial for CNNs. ShiDianNao [181] adopts this strategy and embeds its accelerator
directly into image sensors, eliminating DRAM access and achieving up to 60× en-
ergy savings over DianNao [180]. OS is especially well-suited for vision-centric edge
devices requiring real-time inference.

• Row Stationary (RS): RS maximizes reuse at all levels—inputs, weights, and partial
sums—within RFs. It loops data within PEs, significantly minimizing memory traffic.
MAERI [182] is a representative architecture that implements RS using flexible intercon-
nects and tree-based data routing. Despite increased hardware complexity, RS offers
excellent performance-to-energy trade-offs and is highly scalable across DL models.

Table 6. Summary of four dataflow strategies.

Strategy Memory Access Frequency Energy Efficiency Hardware Design Complexity Edge Suitability

Weight stationary Moderate Good Low Moderate
No local reuse High Poor Low Limited

Output stationary Low Very good Moderate High
Row stationary Very low Excellent High Very high

B. Reducing Memory Load Through Compression and Sparsity: Beyond dataflow op-
timizations, compression and sparsity techniques further alleviate memory bottlenecks:
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• Run-Length Coding (RLC): This method compresses consecutive zeros, reducing
external bandwidth by up to 1.5× for both weights and activations [167].

• Zero-Skipping: This approach skips MAC operations involving zero values, reducing
unnecessary memory access and saving up to 45% of energy [167].

• Weight Reuse Beyond Zeros: This scheme generalizes sparsity by recognizing and
reusing repeated weights, not limited to zeros, further lowering memory access and
computation requirements [160].

These strategies reduce both the volume and frequency of memory access, allowing
edge accelerators to achieve greater energy efficiency without compromising performance.

C. Suitability for Edge Deployment: Considering both memory usage and access pat-
terns, RS and OS strategies are the most suitable for edge deployment:

• RS achieves the best overall efficiency by minimizing access at all hierarchy levels,
though it introduces higher design complexity. It is preferred in scenarios where
flexibility and scalability are needed.

• OS offers a more straightforward design and strong efficiency in vision-centric models,
making it highly appropriate for lightweight, task-specific edge devices.

When coupled with compression methods such as RLC and zero-skipping, these
dataflows become even more advantageous, enabling ultra-low-power, high-throughput
edge AI deployments.
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Figure 12. An illustration of a typical DNN accelerator. At the heart of the ALU lies the MAC unit,
which typically requires up to four memory accesses per operation. The normalized energy cost
associated with each type of memory access is also illustrated.

3.1.5. FPGA-Centric Deployment via Deep Learning HDL Toolbox

The Deep Learning HDL Toolbox by MathWorks offers a comprehensive framework
for deploying DL models on Xilinx and Intel FPGA/SoC platforms, making it a practical
solution for EI [183]. The toolbox enables users to develop DL models natively in MATLAB
(currently supported from version R2021a onward) or import pre-trained models from
external sources, such as Keras and ONNX, with seamless integration into a hardware
deployment workflow.

A distinguishing feature of the toolbox is its automated hardware compilation flow,
where users can generate synthesizable Verilog or VHDL using HDL Coder and Simulink,
targeting custom edge hardware without writing low-level HDL code manually. This
high level of abstraction dramatically simplifies the hardware design process, making it
well-suited for engineers with limited hardware experience. Deployment can be conducted
via standard Ethernet or JTAG interfaces, allowing real-time model instruction loading and
performance monitoring.



Electronics 2025, 14, 2495 25 of 55

To optimize performance on resource-limited edge devices, the toolbox supports
8-bit integer quantization, significantly reducing memory footprint and improving com-
putational throughput. Quantization minimizes the demand on off-chip memory (for
example, DDR), enabling better use of on-chip block RAM and reducing overall energy
consumption—a key consideration in edge AI scenarios.

Figure 13 presents the architecture of the MATLAB-generated HDL processor IP core,
which is platform-agnostic and scalable. The core integrates

• AXI4 master interfaces for DDR communication;
• Dedicated convolution and fully connected (FC) processors;
• Activation normalization modules supporting ReLU, max-pooling, and

normalization functions;
• Controllers and scheduling logic to coordinate dataflow and computation.

E
x

te
rn

al
D

D
R

m
em

o
ry

M
em

o
ry

 i
n

te
rf

ac
e 

IP

Activations

Weights

Instruction sets M
em

o
ry

 a
cc

es
s 

m
ed

ia
to

rs

Profiler and debugger

Scheduler

Convolution

Fully connected

AdditionL
ay

er
 p

ro
ce

ss
o

r

Figure 13. An overview of the MATLAB HDL DL Processor IP that features four AXI4 master
interfaces for data transfer, external DDR memory, a dedicated layer processing unit, and a scheduling
module.

Input activations and weights are transferred from DDR to block RAM via AXI4
and then processed by the convolution or FC units. Intermediate results remain on-chip,
reducing redundant off-chip memory access, which is costly in terms of both latency and
energy. The IP core also supports output feedback to MATLAB, facilitating layerwise
latency profiling and bottleneck analysis.

Compared to conventional SoC or GPU-based solutions, the toolbox’s FPGA-based
deployment achieves a more balanced trade-off between performance and energy efficiency,
particularly in scenarios requiring deterministic latency and low-power operation—making
it highly suitable for edge AI applications such as embedded vision, robotics, and au-
tonomous sensing.

Moreover, the toolbox includes built-in hardware support for essential DL layers,
including 2D and depthwise convolutions, FC layers, various activation functions, nor-
malization, dropout, and pooling. It supports the deployment of popular models such as
AlexNet, VGG, DarkNet, YOLOv2, MobileNetV2, and GoogLeNet to FPGA development
boards such as Xilinx Zynq-7000 ZC706 FPGA, Zynq UltraScale+ MPSoC ZCU102, and In-
tel Arria 10 SoC. This wide compatibility makes the toolbox ideal for rapid prototyping and
deployment of DL models on energy- and resource-constrained edge platforms, combining
customizability, efficiency, and portability in a single development flow.

3.1.6. AMD Vitis AI

AMD Vitis AI is an integrated development framework engineered to streamline
and accelerate DL inference on AMD’s adaptable computing platforms [184]. It encom-
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passes a full toolchain—ranging from IP cores and development libraries to pre-trained
models and compiler toolkits—designed to simplify and optimize AI deployment. The
core inference engine in this environment is the Deep Learning Processing Unit (DPU), a
reconfigurable hardware block tailored for executing popular DL models such as ResNet,
YOLO, GoogLeNet, SSD, MobileNet, and VGG.

The DPU is supported across a broad spectrum of AMD hardware platforms, including
Zynq UltraScale+ MPSoCs, the Kria KV260 Vision AI Starter Kit, Versal adaptive SoCs, and
Alveo accelerator cards. For embedded deployments, Vitis AI enables DPU integration via
both the Vitis unified software platform and the Vivado hardware design suite. Figure 14
illustrates the complete Vitis AI toolchain, highlighting the DPU, compiler, runtime, and
profiling components tailored for edge deployment. Notably, developers can utilize prebuilt
board support packages (BSPs) for rapid deployment without needing in-depth hardware
design skills, making Vitis AI an accessible yet powerful solution for AI at the edge.
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Figure 14. Overview of AMD Vitis AI. It includes tools, libraries, models, and optimized IPs for
accelerating DL inference on edge platforms.

From a memory and energy constraint, Vitis AI is well-optimized for low-power
inference. The DPU architecture is designed to maximize data locality, significantly reduc-
ing the frequency of off-chip DRAM access—one of the primary contributors to power
consumption. Quantization plays a key role in this: the Vitis AI Quantizer converts floating-
point models to INT8, which not only lowers memory usage but also improves energy
efficiency and inference speed with negligible accuracy loss. Compared to standard floating-
point models, INT8 quantization can reduce memory footprint by over 4× and inference
latency by up to 3×, making it especially well-suited for resource-limited edge devices.

Model development is further streamlined through an ecosystem of tools. The Model
Zoo offers pre-trained networks for diverse edge applications such as surveillance, robotics,
and ADAS. The Model Inspector ensures compatibility with DPU-supported layers, while
the Optimizer employs structural pruning techniques to minimize redundant computations,
enhancing both performance and energy efficiency.

Once optimized and quantized, models are compiled using the Vitis AI Compiler,
which maps them to the DPU’s native instruction set. This stage performs advanced graph-
level optimizations, improving data reuse and enabling parallel execution across the DPU’s
computing elements.

Deployment is facilitated through the Vitis AI Runtime (VART), a lightweight runtime
environment supporting both C++ and Python APIs (Python version 3). It allows asyn-
chronous and efficient DPU control within embedded Linux or cloud-hosted applications.
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Building on VART, the Vitis AI Library provides high-level APIs and pre-/post-processing
functions to reduced development time.

To fine-tune performance, the Vitis AI Profiler enables detailed analysis of inference
bottlenecks across CPU, memory, and DPU domains—offering visibility into system-wide
behavior without requiring source code changes.

Compared to general-purpose AI toolchains, Vitis AI offers a tightly coupled hardware–
software co-design that excels in both performance-per-watt and flexibility. The ability to
perform quantized inference using dedicated DPU hardware results in a highly energy-
efficient solution—far surpassing CPU-based implementations and often outperforming
GPU-based alternatives in power-sensitive environments. In contrast to platforms such as
NVIDIA’s Jetson series, which rely on fixed hardware accelerators, AMD’s programmable
fabric allows developers to tailor DPU configurations to match specific model workloads,
offering an edge in customization and scalability.

3.1.7. NVIDIA TensorRT

NVIDIA TensorRT is a highly optimized DL inference engine tailored for high-
throughput, low-latency deployment on embedded and automotive platforms [61]. De-
signed atop the CUDA parallel computing architecture, TensorRT converts pre-trained DL
models into compact, high-speed runtime engines, making it well-suited for power- and
performance-constrained edge environments. Leveraging NVIDIA’s specialized sparse tensor
cores, TensorRT applies a suite of six key optimizations to maximize execution efficiency:

• Mixed-precision quantization, which transforms FP32 weights and activations to FP16
or INT8, reducing computation time and memory usage.

• Layer and tensor fusion, which merges multiple operations into a single CUDA kernel
to cut memory access overhead.

• Kernel auto-tuning, which selects optimal algorithms and batch sizes tailored to the
hardware’s capabilities.

• Dynamic memory allocation, ensuring tensors occupy memory only when needed,
minimizing memory usage.

• Multi-stream execution, enabling concurrent inference across multiple data streams
for improved throughput.

• Time-step fusion for RNNs, which collapses sequential operations over time into fused
kernels to enhance execution parallelism.

Compared to traditional CPU inference, TensorRT can deliver speedups of up to
40×, with significantly lower latency and memory footprint. Its quantization pipeline—
particularly KL-divergence-guided INT8 calibration—preserves accuracy while achieving
notable compression, making it ideal for real-time AI on devices such as the NVIDIA
Jetson series.

In terms of memory efficiency, TensorRT excels through fusion and dynamic manage-
ment, substantially reducing memory access frequency and temporary buffer usage. This
makes it competitive against other edge-oriented toolkits such as AMD Vitis AI [184] and
MATLAB HDL Toolbox [183]. Unlike toolflows requiring hardware synthesis or FPGA IP
integration, TensorRT offers immediate deployment on CUDA-enabled edge GPUs without
requiring hardware design expertise, improving development agility.

Therefore, TensorRT is particularly well-suited for edge AI applications demanding
high inference speed, moderate-to-low memory usage, and plug-and-play deployment
on embedded GPU platforms. Its primary limitation lies in its reliance on NVIDIA GPUs,
whereas alternatives such as Vitis AI or MATLAB HDL Toolbox support FPGAs and SoCs,
potentially offering better energy efficiency in ultra-low-power settings. However, for
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vision, robotics, or autonomous driving applications with available CUDA hardware,
TensorRT remains a top-tier choice.

3.1.8. Qualcomm Neural Processing SDK

The Qualcomm Neural Processing SDK (NPS) is a comprehensive toolkit that facilitates
the deployment of DL models on Snapdragon-based mobile platforms [185]. Compatible
with models trained in popular frameworks such as TensorFlow, Caffe, and ONNX, the
SDK enables efficient, low-latency inference by exploiting Snapdragon’s heterogeneous
architecture, which integrates Kryo CPUs, Adreno GPUs, and Hexagon DSPs. This flexi-
bility allows developers to offload specific tasks to the most appropriate processing unit,
maximizing performance without relying on cloud infrastructure.

As shown in Figure 15, the development pipeline begins with model training and
export from a supported framework. The trained model is then converted into a Deep
Learning Container (.dlc) file, which is optimized for execution on the Snapdragon Neural
Processing Engines (NPEs). Additional optimizations such as quantization and compres-
sion can be applied at this stage to reduce memory usage and boost execution speed, further
tailoring the model for edge operation.
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Figure 15. Workflow overview of Qualcomm Neural Processing SDK.

The SDK provides multiple interfaces, including C++/Java APIs and GStreamer
plugins, enabling developers to integrate these optimized models directly into Android
applications. After deployment, the NPS toolkit offers profiling and debugging tools
to analyze latency, memory usage, and performance bottlenecks, facilitating iterative
refinement and accuracy tuning.

From a comparative standpoint, Qualcomm NPS stands out in energy efficiency and
native integration with Android devices, making it ideal for smartphones, wearables, and
embedded IoT systems. Unlike platforms such as NVIDIA TensorRT [61]—which require
CUDA-capable GPUs—or MATLAB HDL Toolbox [183],which targets FPGA-based imple-
mentations, NPS is optimized for commercial off-the-shelf Snapdragon SoCs, removing
hardware design barriers and offering seamless software-level integration.

Furthermore, compared to AMD Vitis AI [184], which targets more power-hungry
FPGA and SoC platforms, the NPS SDK delivers a lighter-weight deployment path tailored
to mobile edge devices, where thermal and energy constraints are critical. Its support for
custom layers also allows for specialized DL applications beyond standard vision models.

In conclusion, the Qualcomm NPS is particularly well-suited for edge AI deployments
on mobile platforms, offering an efficient, scalable, and developer-friendly solution for
executing DL inference entirely on-device—balancing computational power, memory usage,
and power efficiency.
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3.1.9. Cadence Stratus HLS

Stratus HLS, developed by Cadence Design Systems Inc., is a high-level synthesis
(HLS) tool that translates DL models into register-transfer level (RTL) hardware imple-
mentations [186]. Designed for performance-driven hardware development, Stratus HLS
allows engineers to analyze critical metrics such as power consumption, silicon area, and
inference throughput, making it a powerful option for designing DL accelerators with
precise hardware constraints.

As illustrated in Figure 16, the development pipeline starts with training the DL
model in conventional frameworks such as TensorFlow or Caffe. After training, the learned
parameters—weights and biases—are exported and reused for RTL-based deployment. The
model architecture itself must be manually reimplemented in SystemC, where developers
can define parameterized data types, control numerical precision, and specify hardware-
specific constraints. This SystemC representation forms the basis for HLS compilation.
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Figure 16. Workflow overview of Cadence Stratus HLS for RTL synthesis and inference.

Stratus HLS supports fixed-point quantization, typically ranging from 16-bit down to
12-bit, allowing for reduced memory usage and computational complexity—both crucial
for edge applications. Once the SystemC model is verified, Status HLS compiles it into
synthesizable Verilog RTL code. This RTL design can then be evaluated using other
Cadence tools: Joules RTL Power Solution for energy profiling, Genus Synthesis Solution
for estimating chip area, and Xcelium Simulator for simulating functional performance.

From a comparative standpoint, Status HLS offers a high degree of design flexibility
and fine-grained hardware control, distinguishing it from automated deployment tools
such as TensorRT [61], Vitis AI [184], or MATLAB HDL Toolbox [183]. However, this
flexibility comes at the cost of a steeper learning curve and longer development times, as
manual hardware modeling in SystemC is required.

In terms of edge deployment, Stratus HLS is particularly well-suited for custom ASIC
or low-power FPGA implementations, where power efficiency, chip footprint, and deter-
ministic latency are top priorities. Unlike platform-dependent SDKs such as Qualcomm
NPS [185] or NVIDIA TensorRT—designed for existing SoC platforms—Stratus HLS em-
powers designers to build tailor-made inference engines optimized for their specific edge
use cases. This makes it ideal for mission-critical or resource-constrained environments,
such as wearable devices, industrial sensors, or ultra-low-power embedded systems.

In summary, Stratus HLS provides a robust path for deploying DL models in highly
customized edge hardware, enabling precise optimization of silicon, power, and perfor-
mance. While it requires more hardware expertise than other toolchains, it offers unparal-
leled control for engineers targeting high-efficiency edge AI solutions.
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3.2. Hardware Platforms
3.2.1. CPU and GPU

General-purpose CPUs possess billions of transistors and are architected to handle a
broad range of computational tasks, including DL training and inference. Their powerful
cores and expansive memory systems enable them to execute complex workloads with
high flexibility. However, despite their versatility, CPUs are often suboptimal for EI due to
several drawbacks: elevated power consumption, limited parallelism, low computational
density, and inefficiencies in silicon utilization. The large chip area—partly due to control-
intensive components and general-purpose logic—further contributes to higher fabrication
costs and thermal overhead. Moreover, CPUs are inherently sequential machines and
struggle to exploit the massive parallelism characteristic of DL workloads, which reduces
their overall efficiency in low-latency inference tasks.

GPUs, by contrast, are optimized for data-parallel operations and have become a cor-
nerstone of high-performance computing (HPC) and DL acceleration. Featuring hundreds
to thousands of cores, GPUs are designed to process large volumes of simple arithmetic
operations in parallel, making them far more effective than CPUs for executing CNNs
and matrix multiplications. Like CPUs, GPUs are programmable, supporting major DL
frameworks through tools such as CUDA, cuDNN, and PyTorch (all versions). However,
this performance comes at a cost: high energy consumption, substantial thermal output,
and data transfer latency—especially when interfacing with off-chip memory or external
peripherals.

In the context of edge AI, these characteristics impose critical limitations. Power-
constrained devices—such as drones, mobile devices, wearables, or IoT sensors—cannot
afford the power and thermal budget that GPUs typically require. Although modern
embedded GPU solutions attempt to address these limitations, their deployment feasibility
depends heavily on use-case demands and device constraints.

For example, NVIDIA’s Jetson TX2 integrates an embedded GPU capable of running
DL inference tasks at approximately 15 W, balancing performance and power for interme-
diate edge applications such as smart cameras or mobile robots [187]. A more constrained
alternative is the Jetson Nano, which combines a 128-core Maxwell GPU and a quad-core
ARM Cortex-A57 CPU to deliver DL capabilities within a 5∼10 W power envelope [188].
The JetPack SDK [189] provides a software stack supporting major DL frameworks, en-
abling developers to prototype and deploy inference workloads with relative ease.

In conclusion, while both CPUs and GPUs can perform DL inference, neither is in-
herently ideal for ultra-constrained edge applications. CPUs are constrained by sequential
execution and power inefficiency, while GPUs, though parallel, are still energy-intensive.
For power- and cost-sensitive edge environments, dedicated hardware accelerators (such as
NPUs, DSPs, or custom ASICs) typically offer better performance-per-watt. However, CPUs
and GPUs remain highly valuable for rapid development, prototyping, and edge applications
where flexibility and software compatibility are prioritized over energy efficiency.

3.2.2. SoC and ASIC

Researchers are increasingly adopting ASIC and SoC solutions for DL tasks, driven
by their unmatched performance and energy efficiency. A prominent example is ShiDi-
anNao [181], a custom ASIC designed to optimize memory access patterns, thereby min-
imizing latency and reducing power usage. It belongs to the DianNao family [180], a
series of DL accelerators tailored for embedded environments. Another advanced design,
UNPU [80], is implemented using a 65 nm CMOS technology and supports inference
across convolutional, recurrent, and fully connected layers. UNPU enables flexible weight
precision ranging from 1 to 16 bits and adopts an LUT serial processing scheme to maxi-
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mize energy efficiency during MAC operations. Depending on the precision used, UNPU
delivers peak performance from 345.6 to 7372 GOPS, achieving up to 3080 GOPS per Watt
(GOPS/W) in energy efficiency.

Table 7 provides a comparative summary of representative ASICs and SoCs for EI.
Among them, Envision [118], built on a 28 nm CMOS process, targets always-on vision
tasks in wearable devices. It repurposes inactive arithmetic units for lower-precision
computations, delivering energy efficiency of up to 10, 000 GOPS/W—one of the highest
among surveyed designs. Similarly, SNAP [151], fabricated using a 16 nm process, exploits
unstructured sparsity to optimize convolutional workloads. Despite its compact 2.4 mm2

area, SNAP achieves an impressive energy efficiency of 21, 550 GOPS/W and maintains
low power operation at 348 mW when running pruned ResNet-50 inference.

Table 7. Overview of notable ASIC and SoC solutions designed for edge inference. NA stands for
not available.

ASIC Process
(nm)

Area
(mm2)

Performance
(GOPS)

Power
Consumption

(mW)

Normalized
Power

Consumption
(mW) a

Energy
Efficiency
(GOPS/W)

Supported DL
Models Target Applications

DNA 100 [190] 16 NA 5780 850 NA 6800 All neural
network layers

IoT, AR/VR, autonomous
driving, surveillance,

mobile devices
Stripes [74] 65 122.1 168,768.6 b 17,886.4 b 3.6 9435.6 CNN Image classification

Eyeriss [167] 65 12.3 29.7∼42 255∼332 2685.4∼2916.8 126.5 CNN Image analysis

Bit Fusion [75] 16 5.9 318.9 c 895 1969.8 335.3 CNN, RNN

Image classification,
object detection, language

modeling, optical
character recognition

DesignWare [191] 16 NA 512 NA NA NA CNN, R-CNN,
YOLO

Object detection, image
classification,
segmentation

UNPU [80] 65 16 9.9∼914.8 3.2∼297 84.4 3080 CNN, RNN,
FNN Image classification

Envision [118] 28 1.9 2∼3000 7.5∼300 222.5∼8559.4 260∼10, 000 CNN Always-on vision, face
recognition

PDFA [192] 65 5.8 129.4∼221.8 168 547.3∼938.3 770∼1320 CNN, FCN Object tracking
SNAP [151] 16 2.4 351.3∼7844.2 16.3∼364 80.5 21,550 CNN, FCN Image classification

Cambricon-X [149] 65 6.4 544 954 1143.9 570.2 CNN Image classification
Scalable processor [68] 40 2.4 7.5∼748.8 25∼288 666.9∼5780 300∼2600 CNN Image classification

Sticker [193] 65 7.8 8.2∼15, 425.6 20.5∼248.4 8.6∼1333.8 400∼62, 100 CNN, FCN Object detection

EIE [156] d 45 40.8 102 600 600 170 CNN, RNN,
LSTM

Image classification,
object detection,
automatic image

captioning
FlexFlow [194] 65 3.9 380∼500 1000 2139.6∼2815.3 380∼500 CNN Image analysis

SqueezeFlow [195] 65 4.8 652.8∼761.6 e 536.1 610.3∼712 1217.7∼1420.7 Sparse CNN Image analysis

a Power consumption values are normalized with respect to both area and performance. b These values are
derived based on Stripes’s performance relative to DaDianNao [196]. c This value is derived based on Bit Fusion’s
performance relative to NVIDIA Titan Xp. d EIE is used as a reference for normalizing power consumption.
e These values are derived based on SqueezeFlow’s performance relative to Cambricon-X.

Sticker [193] offers another high-efficiency design, delivering up to 62, 000 GOPS/W in
a 7.7 mm2 footprint. It incorporates a reconfigurable circuit that dynamically adapts across
nine sparsity and memory access modes to maximize energy utilization. Other compact
ASICs, such as FlexFlow [194] and SqueezeFlow [195], provide energy efficiency ranging
from 380 to 1420.7 GOPS/W by supporting flexible dataflows and exploiting sparsity-
aware execution, respectively. Bit Fusion [75], though implemented in 16 nm technology,
achieves 335.3 GOPS/W while demonstrating competitive normalized power consumption
at 1969.8 mW.

On the other end of the spectrum, devices such as Eyeriss [167] and Cambricon-X [149],
despite offering modest energy efficiency (126.5 and 570.2 GOPS/W, respectively), are
valuable for benchmarking due to their detailed open-source performance data. EIE [156],
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optimized for sparse matrix-vector multiplication, is used as a normalization reference in
this study, offering 170 GOPS/W under a 600 mW power budget.

In terms of normalized power consumption—which accounts for both area and
throughput—Stripes [74] shows excellent scaling with a normalized power value of 3.6 mW,
making it one of the most power-efficient designs relative to its performance. Similarly,
UNPU [80] and Sticker [193] also exhibit low normalized power consumption (84.4 and
8.6∼1333.8 mW, respectively), reflecting their optimization for energy-aware workloads.

Major commercial efforts include Cadence DNA 100 [190], a 16 nm IP core designed
for scalable inference acceleration. Supporting frameworks such as TensorFlow and Caffe,
DNA 100 enables deployment across a wide range of applications—from wearables and
AR/VR to autonomous systems—while delivering up to 6800 GOPS/W. Likewise, Synop-
sys DesignWare EV7x [191], a 16 nm FinFET-based IP core, integrates a CNN accelerator
and 512-bit vector DSP, achieving up to 512 GOPS in performance. Ceva’s NeuPro-P [197],
another scalable IP solution, provides 4000∼200, 000 GOPS per core, supporting various
quantization levels and targeting applications such as ADAS and smart cameras.

Google’s Coral Edge TPU [198] focuses on low-power inference with high-speed
execution and supports lightweight transfer learning. Compatible with TensorFlow-Lite
and models such as YOLO and R-CNN, the Edge TPU enables efficient offline processing
and is ideal for EI applications.

Among all hardware options, ASICs clearly offer the highest energy efficiency for
edge inference, as demonstrated by the superior GOPS/W figures in Table 7. However,
ASICs typically hardwire computations, limiting their adaptability to evolving DL models
and algorithms. This lack of flexibility can lead to higher development costs and reduced
scalability. Attempts to enhance flexibility often result in increased chip area and power
consumption. Therefore, both coarse- and fine-grained reconfigurable architectures con-
tinue to gain attention as alternative platforms for rapid prototyping and deployment in
EI systems.

3.2.3. FPGA and Reconfigurable Architectures

The spatial organization of hardware accelerators for DL models generally falls into
two main categories: fine-grained and coarse-grained architectures. FPGAs are exam-
ples of fine-grained reconfigurable platforms, where logic elements are programmed at
a low level using hardware description languages (HDLs). In contrast, Coarse-Grained
Reconfigurable Architectures (CGRAs) have emerged as a promising alternative for edge
applications. CGRAs offer several advantages over traditional fine-grained designs, includ-
ing higher clock speeds, faster computational throughput, and reduced compilation and
reconfiguration times. These features make CGRAs particularly effective for the kind of
tensor-heavy operations found in DL inference. Their architecture strikes a balance between
flexibility and efficiency, positioning them as an attractive solution for high-performance
yet adaptable edge computing deployments.

A. FPGA: FPGAs provide a versatile and reconfigurable hardware platform that offers
faster deployment compared to ASICs, making them well-suited for evolving DL model
requirements. Comprising programmable logic blocks interconnected via configurable
routing resources, FPGAs enable customized hardware implementations using HDLs such
as Verilog and VHDL. Their reprogrammability and support for rapid prototyping have
made them increasingly attractive for DL inference, especially in edge applications where
power efficiency and flexibility are crucial.

The growing need for efficient edge AI solutions has driven the development of com-
pact, high-performance FPGAs. Devices such as the Xilinx Zynq-7000 series, particularly
the ZYNQ-7020, are widely adopted for implementing CNN inference. Notably, the 8-bit
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fixed-point version of the VGG-16 model achieved up to 84 GOPS on this platform [199],
while the 16-bit version reached 13 GOPS [200]. Similarly, Lite-CNN [201], a lightweight
INT8-quantized CNN deployed on the ZYNQ XC7Z020, has demonstrated peak perfor-
mance of 408 GOPS with energy efficiency of 33 GOPS/W, highlighting the potential of
FPGAs for high-throughput, low-power edge inference.

Despite these strengths, FPGA-based DL accelerators face limitations. Mapping
trained models onto FPGA hardware requires additional design effort and toolchain fa-
miliarity. Moreover, the compilation and synthesis processes can be time-consuming, and
reconfiguration is relatively slow compared to loading models onto CPUs or GPUs. FPGAs
also typically operate at lower clock frequencies than ASICs or GPUs, which can limit
performance in certain use cases.

Nevertheless, for edge deployment, FPGAs offer a compelling trade-off between per-
formance, energy efficiency, and adaptability. Their reusability across different models and
support for reduced-precision inference make them particularly advantageous for real-time,
resource-constrained environments such as IoT devices and autonomous systems. Table 8
summarizes key FPGA-based DL implementations, comparing model types, throughput,
and energy efficiency to provide insight into their practical suitability for edge AI solutions.

Table 8. Summary of representative FPGA-based implementations for DL inference, sorted by
energy efficiency.

FPGA Platform DL Model Peak Performance
(GOPS)

Energy Efficiency
(GOPS/W)

Xilinx Virtex-7 C-LSTM [202] 131.1 6.0
Zynq ZU3EG Synetgy [94] 47.1 8.6

Arria 10GX1150 BBS-LSTM [39] 304.1 15.9
Xilinx XC7Z100 DeltaRNN [203] 192.0 26.3

Xilinx ZC702 XNOR-Net [77] 207.8 44.2
Xilinx ZC702 DoReFa-Net [86] 410.2 181.5

B. Reconfigurable Architectures: DL inference accelerators are typically composed of a
structured array of PEs, RFs, and either shared or scratchpad memory. These components work
together to maximize performance by enabling efficient dataflow, low-latency computation,
and high energy efficiency. The architectural design—especially when optimized for data
reuse, memory locality, and compute parallelism—can significantly reduce the dependency
on power-hungry off-chip memory access, which is crucial for real-time, edge-based inference.

In particular, CGRAs have emerged as a favorable alternative to general-purpose
CPUs and GPUs for DL workloads, especially at the edge [167,204,205]. Unlike traditional
processors that rely heavily on software-level parallelism and external memory bandwidth,
CGRAs incorporate tightly coupled PEs with local memory, which enhances temporal and
spatial reuse. This results in improved throughput and lower energy consumption—key
metrics for deploying inference on power- and thermal-constrained edge devices. Table 9
highlights several state-of-the-art reconfigurable architectures, comparing supported model
types, peak throughput, and energy efficiency.
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Table 9. Overview of notable reconfigurable architectures for DL inference, sorted by energy efficiency.
NA stands for not available.

Reconfigurable
Architecture

Supported DL
Model

Peak Performance
(GOPS)

Energy Efficiency
(GOPS/W)

Lite-CNN [201] CNN 363 33
SDT-CGRA [206] CNN, SVM, etc. 92.3 50.8

Eyeriss [167] CNN 46.2 166
EyerissV2 [59] CNN 153.6 962.9

Thinker chip [207] CNN, RNN 409.6 1060
NullHop [159] CNN 450 3000

DNPU [208] CNN, RNN 1214 8100
DRP [209] CNN, DNN 960 NA

Eyeriss [167], for example, is a pioneering CGRA tailored for convolutional work-
loads. It integrates 168 PEs interconnected via a network-on-chip (NoC) and employs data
sparsification and compression to reduce off-chip memory access. With 16-bit fixed-point
quantization, it achieves 166 GOPS/W at just 278 mW while running AlexNet, making it
an excellent candidate for mobile and embedded platforms. Its successor, EyerissV2 [59],
adopts a hierarchical buffer and PE structure, further reducing interconnect overhead and
improving scalability for larger DL models—an advantage in real-time inference at the
edge.

Thinker [207], another CGRA chip, provides three levels of reconfigurability, including
variable-precision multipliers (8-bit/16-bit), support for zero-skipping, and dynamic on-
chip memory control. These features allow it to sustain high utilization rates of its PEs and
achieve up to 590 GOPS/W at 335 mW, making it highly suitable for edge devices with
tight power envelopes.

SCNN [58] goes a step further by introducing sparsity-aware design in both weights
and activations, using a reconfigurable multiplier array and accumulator registers. Its
architecture includes dual 8-bit multipliers per PE (configurable to 16-bit), and it supports
multiple DL layer types including pooling and activation. A related ASIC version fabricated
on a 65 nm process demonstrates a high throughput of 409.6 GOPS and energy efficiency
of 5090 GOPS/W—ideal for battery-operated AI systems [210].

DNPU [208] supports both CNNs and RNNs and includes dedicated logic for dense
layers, pooling, and activation. It supports variable integer precision (4-, 8-, and 16-bit)
to trade off accuracy and energy consumption. In 4-bit mode, DNPU reaches 1200 GOPS
and 3900 GOPS/W, a performance level well-suited for time-sensitive and power-aware
edge inference.

SDT-CGRA [206] introduces programmable delays to handle temporally aligned data
streams, using three MAC instructions per PE and a VLIW control architecture. This level
of control allows for efficient handling of variable-length sequences and attention-based
models, enhancing its applicability for edge NLP and time-series applications.

Architectures such as Tianjic [211] and Simba [212] implement decentralized weight
storage and inter-PE weight exchange, minimizing data movement and improving scal-
ability [196,205]. These designs are especially beneficial for edge systems that prioritize
low-latency processing across multiple cores or modules.

The Dynamically Reconfigurable Processor (DRP) [209] integrates a CGRA core that can
adapt its topology in real time, supporting various precision formats from binary to 16-bit
fixed/floating-point. This reconfigurability makes it an appealing option for heterogeneous
edge workloads that require quick switching between DL tasks with minimal overhead.
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In the reinforcement learning domain, the CGRA introduced in [213] provides
stationary-function PEs, configurable activation units, and internal memory addressing,
which enable efficient policy updates and action-value computations at the edge.

Microsoft’s NPU, designed under Project Brainwave [214], supports up to 96k MAC
operations with an SIMD instruction set optimized for vectorized operations. When
mapped to Intel’s Stratix 10 FPGA, it can achieve between 10,000 and 35,000 GOPS for
real-time RNN inference, balancing high throughput with FPGA-level adaptability—well-
matched for industrial or embedded AI edge scenarios.

Across these platforms, performance is heavily influenced by how well memory ac-
cess patterns are managed. Neural accelerators often rely on three primary data streams:
weights, input activations, and intermediate outputs. NoCs allow direct inter-PE communi-
cation to reuse data locally, reducing the need for costly DRAM access. Moreover, GLBs
minimize memory traffic, while double buffering enables simultaneous computation and
data prefetching, increasing pipeline throughput [207].

In comparison to general-purpose CPUs and even GPUs, CGRA-based DL accelerators
offer superior energy efficiency, deterministic latency, and model-specific customization,
making them especially valuable for EI. While GPUs deliver high raw performance, their
high power draw and memory bottlenecks limit their viability in power-constrained en-
vironments. FPGAs offer reconfigurability but suffer from long compilation times and
toolchain complexity. CGRAs bridge this gap by offering hardware efficiency closer to
ASICs while retaining enough flexibility to adapt to different DL models—an essential trait
for edge AI systems that require balance between agility and performance.

3.2.4. Vision Processing Unit

Vision Processing Units (VPUs) represent a class of specialized microprocessors op-
timized for executing DL inference in machine vision tasks at the edge. Designed for
low-power environments, VPUs enable real-time inference on pre-trained CNNs and other
vision-centric DL models, balancing performance with energy efficiency. Their architecture
makes them ideal for integration into edge-centric domains such as surveillance systems,
robotics, smart home devices, UAVs, AR/VR wearables, IoT nodes, and mobile devices—
where constraints on power, size, and latency are critical.

One prominent VPU example is the Movidius Myriad X [215], a vision-oriented SoC
supporting 8- and 16-bit integer as well as 16-bit floating-point operations. It incorporates
a 4K image processing pipeline and handles input from up to eight HD sensors. With up
to 4000 GOPS peak performance, it excels in vision tasks including image enhancement,
object detection, and DL inference. Its efficient parallel dataflow and compatibility with the
Myriad Development Kit and Intel’s OpenVINO toolkit [216] enable easy model deploy-
ment without requiring extensive hardware customization—making it highly suitable for
energy-constrained edge environments.

Built around the Myriad X chip, the Intel Neural Compute Stick 2 (NCS 2) [217] offers
plug-and-play AI acceleration in a compact USB form factor. It supports a wide array of
DL frameworks such as TensorFlow, Caffe, ONNX, PyTorch, and Apache MXNet, allowing
seamless migration of existing models. Its ability to connect directly to platforms such as
Raspberry Pi and Intel NUC makes it a go-to solution for portable edge inference scenarios,
including image classification, speech processing, and lightweight translation tasks.

NeuFlow [179], implemented on a Xilinx Virtex-6 FPGA, is designed for high-throughput,
real-time vision tasks such as object detection and semantic segmentation. Despite being
developed on older FPGA technology, NeuFlow achieves 12 fps while consuming only 10
W, demonstrating a 100× speedup over conventional CPUs for specific urban street scene
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segmentation tasks. While not as power-efficient as modern VPUs, its flexible FPGA base
allows for customization, which is valuable in research and prototyping contexts.

Google’s Pixel Visual Core (PVC) [218] is another VPU tailored for mobile environ-
ments. Built around ARM Cortex-A53 cores and equipped with custom image processors,
PVC offers up to 3280 GOPS in FP32 precision at only 6∼8 W, maintaining low idle power
draw with bursts of high-speed processing when needed. Its 256-PE ALUs organized in
2D arrays enable dense computation for tasks like HDR+ image processing and on-device
ML inference. PVC’s integration in Google Pixel devices highlights its effectiveness in
delivering real-time vision inference in battery-operated platforms.

The Mobileye EyeQ6 SoC family [219] represents high-performance VPUs tailored for
automotive-grade edge computing. Manufactured using a 7 nm FinFET process, EyeQ6
combines a VLIW SIMD architecture with scalable multi-core configurations, enabling
up to 34,000 GOPS in INT8 precision. This architecture is built to handle the complex,
safety-critical workloads in autonomous driving systems, demonstrating real-time decision-
making capabilities with low latency and tight power envelopes—a vital trait for automo-
tive edge inference.

Compared to general-purpose CPUs and GPUs, VPUs offer a much more power-
efficient and application-specific alternative for EI. While they generally lack the pro-
grammability and compute versatility of GPUs, their optimized architectures deliver high
throughput with minimal energy draw—ideal for edge scenarios requiring sustained per-
formance in thermally constrained environments. Devices such as Myriad X and EyeQ6
clearly illustrate this balance, with compact form factors and efficient DL handling tailored
to embedded and real-time workloads.

3.2.5. Microcontroller Unit

Microcontrollers (MCUs) have long served as the cornerstone of embedded systems,
powering a wide range of applications including industrial control, consumer electronics,
automotive systems, healthcare devices, and vision-based solutions. Their integration
into virtually every sector is driven by attributes such as ultra-low power consumption,
affordability, and ease of integration. As the demand for intelligent edge computing
grows, incorporating DL capabilities into MCUs has opened the door to enabling real-time,
low-power AI in billions of edge devices.

Traditionally optimized for control-oriented tasks rather than compute-intensive work-
loads, MCUs were not designed with DL inference in mind. However, modern MCUs have
evolved significantly, now featuring higher clock frequencies, increased cache sizes, and
more advanced control units. These improvements, coupled with efficient model compres-
sion techniques—such as fixed-point quantization, pruning, and operator fusion—have
enabled the deployment of lightweight DL models even within the tight constraints of
MCU hardware.

DL inference on MCUs is typically limited to models that have been highly compressed
and optimized. Many contemporary MCUs support 8- or 16-bit integer operations and some
feature-limited forms of parallelism such as basic pipelining or SIMD-like operations. Despite
these improvements, key limitations persist, including restricted on-chip memory, lack of
hardware acceleration for matrix operations, and limited instruction-level parallelism. These
factors limit the complexity and depth of DL models that can be effectively deployed.

Several software frameworks have been developed to bridge the gap between DL
models and MCU hardware. For example, CMSIS-NN [62], tailored for ARM Cortex-M
devices, provides a set of optimized neural network kernels and supports quantized model
deployment through post-training transformation. Similarly, the PULP-NN library [220]
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for GAP8 processors offers a memory-efficient execution model using software-controlled
scratchpad memory, ideal for scenarios where external DRAM is unavailable.

However, many MCUs still lack hardware support for sub-word operations, which
forces 8-bit or smaller computations to be serialized within 32-bit registers, reducing
computational throughput. To address this, some researchers have introduced RISC-V ISA
extensions for sub-byte quantization support [221]. While this can significantly enhance
compression and efficiency, its adoption remains limited due to the relative scarcity and
higher cost of commercial RISC-V MCUs.

Real-world deployment examples such as Hello Edge [222] demonstrate the feasibility
of using DL models—including CNNs, RNNs, and hybrid architectures—on ARM Cortex-
M MCUs for applications such as voice recognition in always-on devices. These systems
require a delicate balance between ultra-low power consumption and responsiveness, as
they often operate on batteries and demand immediate reactions to stimuli (for example,
voice commands or gestures).

TensorFlow-Lite for MCUs (TFLM) further extends DL support to MCUs with minimal
resources, such as the ARM Cortex-M3 with solely 16 kB of RAM [216]. TFLM supports var-
ious 32-bit MCU platforms including ESP32, STM32, and NXP MCUs, allowing developers
to port small-scale models for tasks such as keyword spotting, sensor anomaly detection,
and environmental monitoring.

Another framework, MicroAI [223], is specifically designed for 32-bit MCUs and
offers a complete toolchain for training, quantizing, and deploying DL models. It has been
evaluated on platforms such as Ambiq Apollo3 and STM32L452RE, showing competitive
performance in tasks such as image classification and activity monitoring under tight
memory and power budgets.

When compared to other hardware options such as VPUs, FPGAs, and ASICs, MCUs
stand out for their unmatched power efficiency and cost-effectiveness, making them es-
pecially suitable for ultra-constrained edge deployments. While they cannot match the
computational capabilities or throughput of VPUs or specialized accelerators, their simplic-
ity, ubiquity, and real-time responsiveness make them ideal for deploying highly optimized
DL models in environments where power, space, and cost are paramount. In other words,
MCUs are best suited for simple inference tasks rather than complex models or high-
throughput applications. They excel in scenarios requiring always-on, low-latency, and
privacy-sensitive processing, such as keyword spotting, sensor data analysis, or basic
gesture recognition. For more demanding DL tasks—such as real-time object detection
or video analysis—alternative edge accelerators with greater compute capabilities and
parallelism would be more appropriate.

4. Edge Inference Evaluation Metrics
4.1. Model Size and Memory

Model size is a key factor in assessing the effectiveness of EI. For edge deploy-
ments, lightweight network architectures are generally favored. Several hyperparameters—
including the number of layers, the size of each layer, the choice of activation functions, the
computational complexity per layer, and the density of inter-layer connections—have a
direct impact on inference speed and efficiency. As a result, both the overall model architec-
ture and its hyperparameter configuration must be carefully designed. Additionally, the
total count of parameters (such as weights and biases) determines the memory footprint,
making it another critical performance indicator.

For ease of explanation, let us assume that all model parameters share the same bit
width. Under this assumption, the model size (S) can be defined as the product of the total
number of parameters (C) and the bit width (B), as shown in Equation (1).
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In convolutional layers, let fi and fo denote the number of input and output feature
maps, respectively. Given a kernel size of n × m, the total number of weights is n · m · fi · fo,
and the number of biases is fo. Thus, the parameter count for a convolutional layer is
(n · m · fi + 1) · fo.

For dense layers, let di and do represent the number of input and output nodes. The
number of weights is di · do, and the number of biases is do, resulting in a parameter count
of (di + 1) · do. The value of di is derived from the dimensionality of the output feature
map from the preceding layer.

Other layers, such as input and pooling layers, typically do not introduce additional
parameters. Therefore, if the model contains Nconv convolutional layers and Ndense dense
layers, the total parameter count is given by Equation (2).

S = C · B, (1)

C = ∑
Nconv

(n · m · fi + 1) · fo + ∑
Ndense

(di + 1) · do. (2)

Table 10 illustrates an example of model size calculation. The input size is 1 × 30 × 30
(channel × height × width). The first and second convolutional layers use kernels of size
7 × 7 and 3 × 3, respectively, producing 32 and 16 output feature maps. No boundary
padding is applied, and the convolutional kernel strides across the input with a step size of
1 pixel. Max pooling layers are configured with 2 × 2 kernels.

Table 10. Example of DL model size calculation.

Layer Output Dimensions Parameters

Input 1 × 30 × 30 0
1st conv. 32 × 24 × 24 (7 · 7 · 1 + 1) · 32 = 1600

1st max pooling 32 × 12 × 12 0
2nd conv. 16 × 10 × 10 (3 · 3 · 32 + 1) · 16 = 4624

2nd max pooling 16 × 5 × 5 0
Dense 256 (16 · 5 · 5 + 1) · 256 = 102, 656

Output 10 (256 + 1) · 10 = 2570

Total parameter count (C) 111, 450
Bit width (B) 16 bits

Model size (S) 1, 783, 200 bits = 222.9 KB

4.2. Accuracy

Accuracy measures whether the inference engine can reliably complete its intended
task. It is defined as the ratio of correct predictions to the total number of predictions, as
shown in Equation (3), where TP, TN, FP, and FN represent true positives, true negatives,
false positives, and false negatives, respectively. In EI applications, where computations
are predominantly implemented using fixed-point arithmetic, it is crucial to examine the
impact of bit precision on model accuracy. Experimental findings in [224] indicate that INT8,
INT16, and INT32 representations yield accuracy comparable to that of FP32. However,
reducing the precision further to INT4 incurs a noticeable degradation, with accuracy
dropping by 3.44%.

ACC =
TP + TN

TP + TN + FP + FN
. (3)

Inference accuracy can sometimes be influenced by the speed at which input data is
delivered. For example, in video stream processing, rapid frame input may lead to frame
drops due to hardware limitations, causing a decline in accuracy [225]. Beyond accuracy,
robustness is a vital aspect of inference performance. Models that perform well on clean,
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ideal datasets in controlled environments may struggle in real-world conditions. As EI
aims to deliver DL capabilities directly to users, robustness becomes crucial. Evaluating
performance across multiple, well-established datasets helps gauge how well a model
generalizes. Additionally, if specific preprocessing steps enhance accuracy, they must be
consistently applied during inference to maintain performance.

4.3. Area

Chip area refers to the surface area of the silicon wafer on which the DL inference
implementations are fabricated. It is typically measured in square millimeters (mm2) or
square micrometers (µm2). The area requirement is influenced by several factors, including
the fabrication technology node, system architecture, gate count, and on-chip memory size.
Due to the intricacies involved, accurately calculating chip area is time-consuming and
often impractical during early design stages. To address this, designers rely on estimation
tools such as the Cadence InCyte Chip Estimator [226]. This tool employs a utilization-
based methodology, leveraging standard cell and I/O libraries provided by IP vendors and
foundries to estimate area.

As chip cost is closely tied to its area, considerations such as memory type and capacity,
as well as the complexity of control logic, play a major role in determining overall expense.
Inference engines generally offer on-chip memory in the range of a few hundred kilobytes.
Therefore, both the chip area and memory requirements must be carefully evaluated during
design. One effective strategy is to employ fixed-point arithmetic, which reduces the bit
width of model parameters. This not only lowers the complexity of arithmetic units but
also decreases the memory footprint required for parameter storage. As demonstrated
in [224], using INT16 and INT8 representations can reduce chip area by 2.43× and 4.98×,
respectively, compared to conventional FP32 implementations.

4.4. Energy Efficiency

Power consumption, typically measured in milliwatts (mW) or microwatts (µW),
represents the total energy required to perform inference tasks. This measurement should
account not only for the computation but also for the energy spent on memory access.
While emerging energy-harvesting technologies offer alternative power sources for edge
devices, minimizing inference power consumption remains a critical priority. The overall
power draw is heavily influenced by the number of computations performed and the
frequency with which data is transferred to and from off-chip memory. Memory access
often dominates energy consumption, making it a key optimization target. In fact, the
power cost associated with memory can often be estimated by analyzing the volume of
data read and written during each inference cycle.

As defined in [227], the total power consumption of a DL model is the sum of the power
consumption by all its layers. The power consumption for each layer can be expressed as

Player = Pdata + Pcomp, (4)

where Pdata denotes the energy required for reading, writing, and transferring data—
including weights, biases, and input/output feature maps—and Pcomp represents the
energy consumed in performing MACs.

Given the significant difference in energy costs for on-chip and off-chip memory
access, it is essential to account for memory hierarchy when estimating Pdata. This involves
optimizing memory access patterns and calculating the number of bits accessed at each
memory level. Based on this analysis, the normalized energy cost per bit for each memory
tier can be determined. Similarly, accurate estimation of Pcomp requires computing the total
number of MACs involved and multiplying by the energy cost per MAC operation.
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Energy efficiency evaluates how effectively a device performs operations relative to its
power consumption. As edge devices typically rely on battery power, achieving ultra-low
power consumption along with high computational efficiency is crucial. Energy efficiency
is a core metric in assessing DL inference performance and is commonly expressed in
giga operations per second per watt (GOPS/W) or tera operations per second per watt
(TOPS/W), indicating the number of operations executed per watt of energy used. In sys-
tems where floating-point computations dominate, the FLOPS per watt (FLOPS/W) metric
is also employed. The efficiency of energy use is affected by the model size, computational
complexity, and memory access frequency.

4.5. Latency and Throughput

Latency refers to the amount of time an inference engine takes to complete a single
inference task. It is a key factor for achieving real-time performance, especially in time-
critical applications. Typically measured in milliseconds (ms) or microseconds (µs), latency
represents the time gap between receiving an input and producing the corresponding
output. In EI, minimizing latency is highly desirable. For example, real-time applications
such as AR/VR and robotic vision often demand response times within a few milliseconds.

Several factors influence latency, including the hardware specifications of the edge
device, resource availability, and the execution strategy of the inference process. Optimizing
these aspects is essential to ensure fast and efficient inference performance in real-world
environments. Similar to chip area estimation, determining the exact inference latency
of DL models is often impractical. Instead, a recent work [228] proposes an estimation
framework that (i) converts the model into a directed acyclic graph, (ii) encodes the graph
using adjacency and feature matrices, (iii) applies Graph Neural Networks (GNNs) and
Gate Recurrent Units (GRUs) to learn graph representations, and (iv) predicts latency based
on the extracted features.

Throughput in DL refers to the maximum number of inputs a network can handle
within a specific time frame. It is typically measured by the number of operations an infer-
ence accelerator can execute per second. Higher throughput reflects superior processing
performance. Common units for measuring throughput include giga operations per second
(GOPS) and tera operations per second (TOPS). As most DL computations involve MAC
operations, throughput is also often represented as giga MACs per second (GMACS) or
tera MACs per second (TMACS). Each MAC comprises a multiplication followed by an
addition—equating two operations—so, the TOPS-to-TMACS ratio is 2:1.

Using the same notations introduced for convolutional and dense layers in the model
size calculation, the total number of floating-point operations can be expressed as

T = ∑
Nconv

(n · m · fi · fo · H · W) + ∑
Ndense

(di · do), (5)

where H and W denote the height and width of the output feature map. Given the total
operation count T, throughput can be computed by dividing T by the estimated latency. To
convert throughput from GOPS or TOPS to GMACS or TMACS, simply multiply by two.

Achieving high throughput is essential for enabling real-time performance across
a wide range of applications such as autonomous driving, medical imaging, security
systems, and industrial automation. Real-time inference requires both low latency and
high throughput. The throughput capability of a system is closely tied to the number of
processing cores on the chip, making core count a critical factor when evaluating inference
hardware.
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5. Challenges and Opportunities
5.1. Automatic Hardware Mapping

FPGAs and CGRAs offer flexibility to address some of the limitations of ASICs by
allowing for the reconfiguration of DL operations, functional blocks, or entire network
architectures. However, translating trained DL models into hardware-compatible forms
for inference remains a complex, time-consuming, and largely manual process. A notable
gap exists in the development of automated tools that can efficiently map DNNs onto
hardware platforms. Current solutions for automating DL model deployment on FPGAs
or CGRAs are still suboptimal, highlighting the need for more capable and streamlined
mapping frameworks.

ML frameworks play a vital role in enabling rapid model prototyping across diverse
applications. Expanding these frameworks with additional functions and libraries can
significantly ease the integration of compression techniques. For example, NVIDIA’s cuS-
PARSE [63] and Intel’s oneMKL [229] libraries facilitate sparse matrix operations, while
TensorFlow supports both training-time and post-training quantization. Xilinx also con-
tributes with FINN-R [230], a framework that enables quantized inference on FPGAs. To
advance the deployment of efficient DL models on reconfigurable hardware, the develop-
ment of more sophisticated training and compression-support libraries is essential.

5.2. Cross-Layer Mapping and Runtime Adaptation for Edge Deployment

While automatic hardware mapping plays a vital role in optimizing DNN inference for
specific platforms, static mapping alone is insufficient in dynamic edge environments. Edge
devices frequently experience fluctuations in workload, power availability, temperature,
and communication latency. These factors necessitate adaptive deployment strategies that
can adjust inference behavior at runtime to maintain efficiency and responsiveness.

Recent frameworks [231,232] have started integrating runtime information into de-
ployment decisions. Apollo [231] provides real-time, cycle-accurate power modeling
through on-chip power meters that track key RTL signal transitions. This allows edge
systems to introspect and adapt inference tasks based on live power consumption, enabling
runtime control strategies such as throttling, migration, or selective model scaling. Adap-
tiveNet [232] further extends this concept by offering a comprehensive online optimization
and deployment adaptation framework. It combines system-level feedback (energy or
latency) with model parameters to dynamically select optimal deployment configurations
on edge devices.

These cross-layer frameworks highlight the importance of moving beyond static map-
pings and incorporating runtime feedback loops into the deployment pipeline. Compilers
and runtime environments must evolve to support flexible scheduling, latency-aware
kernel fusion, memory-aware operator placement, and dynamic precision tuning. By in-
tegrating model structure, platform, constraints, and runtime context, such systems can
better navigate the trade-offs between accuracy, latency, and energy efficiency in real-world
edge scenarios.

5.3. Automatic and Edge-Aware Compression

Most current compression models rely heavily on manual tuning and expert
knowledge—for example, selecting quantization bit widths, determining rank values in ma-
trix decomposition, or setting layer-specific sparsity levels. To maximize memory efficiency
and minimize computation while maintaining acceptable accuracy, compression-related
hyperparameters—such as pruning ratios, quantization precision, pruning patterns across
layers, and training epochs—should be automatically optimized. As a result, developing
automated compression strategies presents a compelling area for future research.
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Although many compression techniques are applied after training, integrating them
into the training phase remains complex due to the iterative nature of the learning process.
However, automating compression during training could lead to better compression rates
and more efficient hardware deployment. This opens up exciting research opportunities for
designing compression-aware training workflows that accelerate convergence and reduce
computational demands.

Despite the growing variety of DNN compression methods, the field lacks standard-
ized evaluation metrics to enable fair and consistent comparisons. Establishing robust
benchmarking criteria for compression performance remains an open and valuable direc-
tion for further investigation.

5.4. Neural Architecture Search for Edge Inference

NAS has the potential to deliver highly accurate and efficient models. However, one
of its primary challenges lies in the substantial computational cost and time required to
explore the vast search space. This opens promising research directions for developing
more efficient NAS methods capable of generating lightweight DL architectures suitable
for edge deployment.

Given the diversity of edge hardware platforms and specialized neural accelerators,
each with unique performance characteristics, incorporating hardware-awareness into
NAS is crucial. A hardware-aware NAS approach can use real-time performance feedback
from target devices to tailor architectures specifically optimized for those platforms. For
example, ProxylessNAS [35] demonstrates the ability to search for architectures directly
compatible with hardware constraints. Nevertheless, the increasing variety of edge devices,
particularly in the IoT field, further expands the NAS search space and adds complexity to
the optimization process.

5.5. Edge Training

DL model training is typically conducted in the cloud, where the process is static and
isolated, with no built-in mechanism to retain and apply learned knowledge over time.
This approach not only demands extensive datasets but also limits the scope of application.
Enabling on-device retraining and transfer learning on the edge could unlock numerous
possibilities, especially in scenarios where data is dynamic and continuous learning from
new inputs is essential.

Although edge training accelerators such as ScaleDeep [233] and HyPar [234] have
been introduced, they often overlook critical aspects such as data sparsity and the use of
variable precision in gradients, parameters, and activations. This leaves ample room for
enhancement by incorporating layer-wise optimizations and supporting mixed-precision
computations to increase performance and energy efficiency. Given the intensive computa-
tion requirements of training compared to inference, these challenges become even more
pronounced on edge devices.

Most edge training approaches rely heavily on supervised learning, which assumes
access to abundant, high-quality labeled data—a condition rarely met in real-world settings,
where data is typically sparse and unlabeled. Active learning [235] offers partial relief by
enabling models to query the most informative data for labeling, but it still depends on
human annotation and works best with smaller datasets. Federated learning provides a
promising alternative by decentralizing training: models are trained locally on edge devices
using private data, and only model parameters are shared to collaboratively build a global
model without centralizing the data.

To further address data limitations, strategies such as incremental learning and data
augmentation can be employed. Moreover, Lifelong Machine Learning (LML) [236] offers a
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forward-looking solution by mimicking human-like adaptability—continuously learning
from previous experiences and applying that knowledge to new tasks. While LML is
currently designed for high-performance computing systems, adapting it for edge environ-
ments presents a compelling research frontier. Achieving this would enable edge devices
to better cope with changing conditions and data scarcity in real-world applications.

6. Conclusions
This review contributes a structured and up-to-date synthesis of deep learning (DL)

inference strategies tailored for edge intelligence, with several distinguishing features that
set it apart from existing surveys. Unlike prior works that emphasize DL architectures or
hardware implementations in isolation, this paper offers a holistic view that integrates edge-
specific model compression techniques, embedded AI hardware platforms, and memory
optimization strategies—areas that are often underrepresented or treated separately in the
literature.

A key novelty of this survey lies in its comprehensive taxonomy that bridges the
gap between algorithmic methods and system-level deployment challenges, particularly
highlighting recent advancements in model compression (for example, pruning, quantiza-
tion, knowledge distillation) within the context of both hardware and software co-design
for edge inference. We also distinguish our work by systematically evaluating software
frameworks and compilers in conjunction with hardware accelerators—something previous
reviews have not fully addressed.

This paper identifies several gaps in the current body of work, including the lack
of end-to-end analysis of software—hardware co-design pipelines, limited support for
adaptive optimization in resource-limited environments, and the insufficient integration
of energy-aware design across the DL stack. These gaps indicate opportunities for future
research aimed at making DL models more portable, scalable, and efficient at the edge.

For practitioners and engineers, we recommend adopting lightweight DL models
that are co-optimized with deployment platforms, using quantization-aware training,
structured pruning, and memory-efficient operations as standard practices. Additionally,
we emphasize the importance of choosing compilers and runtime environments that align
with the target edge hardware to maximize performance and minimize power consumption.

The relevance of this topic continues to grow as edge AI becomes central to applica-
tions in smart cities, autonomous systems, and real-time sensing. Addressing the unique
constraints of edge environments—such as limited energy, computing power, and memory—
will be essential to unlocking the next generation of intelligent, responsive, and sustainable
AI-powered systems.
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