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Abstract

Deep learning has significantly advanced image classification by leveraging hierarchi-
cal feature representations. A key factor in enhancing classification accuracy is feature
concatenation, which integrates diverse feature sets to provide a richer representation of
input data. However, this fusion strategy has inherent limitations, including increased
computational complexity, susceptibility to redundant or irrelevant features, and challenges
in optimally weighting different feature contributions. To address these challenges, this
paper presents a pseudo-multiview learning method that dynamically combines different
views at the evidence level using a belief-based model known as subjective logic. This
approach adaptively assigns confidence levels to each view, ensuring more effective inte-
gration of complementary information while mitigating the impact of noisy or less relevant
features. Experimental evaluations of datasets from various domains demonstrate that
the proposed method enhances classification accuracy and robustness compared with
conventional classification techniques.
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1. Introduction
Image classification is a fundamental task in computer vision that involves assigning a

label to an image based on its visual content. Traditional methods rely on handcrafted fea-
ture extraction techniques such as scale-invariant feature transform (SIFT) [1], histogram of
oriented gradients (HOG) [2], and color histograms, followed by a classifier such as support
vector machines (SVM) [3] or k-nearest neighbors (k-NN) [4]. While these approaches are
effective for specific tasks, they often struggle with complex patterns and require domain
expertise for feature engineering.

With the rise of deep learning, convolutional neural networks (CNNs) [5] have revo-
lutionized image classification by automatically learning hierarchical features from raw
pixel data. Architectures such as AlexNet [6], VGG [7], ResNet [8], and EfficientNet [9]
have achieved state-of-the-art performance on benchmark datasets such as ImageNet [10].
In practice, image classification is widely used in various fields, including medical imaging
(e.g., diagnosing diseases from X-ray or MRI scans), autonomous driving (e.g., recognizing
pedestrians and traffic signs), and security surveillance (e.g., facial recognition for authenti-
cation). The shift from traditional techniques to deep learning has significantly improved
accuracy and robustness, making image classification a cornerstone of modern artificial
intelligence (AI) applications.
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Feature combination plays an important role in enhancing classification accuracy by
integrating diverse information sources to provide a more comprehensive representation
of data. Among various fusion strategies, feature concatenation [11] is widely used due to
its simplicity and effectiveness in combining multiple feature sets, allowing deep learning
models to leverage complementary information. However, this approach often increases the
model’s capacity, leading to the confidence calibration problem (CCP) [12], where the model
becomes overconfident in its predictions, reducing reliability. Addressing CCP requires
incorporating uncertainty into the classification process. Uncertainty-aware classifiers,
including Bayesian-based [13,14] and non-Bayesian-based methods [15,16], have been
explored to mitigate this issue. However, Bayesian-based methods are computationally
expensive, making them impractical for real-time applications, while non-Bayesian-based
methods are typically limited to single-view data, restricting their generalizability.

Traditional neural network classifiers with softmax layers produce outputs that lie
on a probability simplex, representing class probabilities. However, these outputs are
often misinterpreted as confidence scores despite lacking explicit representation of un-
certainty. In contrast, the Dirichlet distribution models a probability density over the
simplex, allowing for the representation of second-order probabilities and the associated
uncertainty. Subjective logic [17]—an extension of probabilistic logic that incorporates
uncertainty and subjectivity—leverages this capability to express not only predictions but
also the uncertainty surrounding those predictions.

The proposed method utilizes subjective logic to fuse information from multiple views
at the evidence level rather than at the feature or output level, as in conventional approaches.
This strategy enhances model reliability and robustness by preserving uncertainty through-
out the decision-making process. Specifically, pseudo-multiview data are generated from
a single input, with each view modeled using a variational Dirichlet distribution. The
parameters of these distributions are estimated from the extracted evidence across views.
An averaging fusion rule is then applied to integrate the evidence, resulting in a robust and
uncertainty-aware classification framework-validated empirically across diverse datasets.

The main contribution of this paper is a pseudo-multiview classification method
that introduces a new paradigm for integrating multiview information in a reliable and
uncertainty-aware manner. The remainder of this paper is organized as follows: Section 3
provides preliminary background information, followed by the description of the proposed
method in Section 4. Section 5 presents experimental results to validate the superiority of
the proposed method, and Section 6 concludes the paper.

2. Uncertainty-Aware Classification
In safety-critical and high-stakes applications, the reliability of neural network predic-

tions is as important as their accuracy. Traditional deterministic models, which output point
estimates, often lack the ability to quantify uncertainty, potentially leading to overconfident
and erroneous decisions [12]. Uncertainty-aware classification addresses this limitation
by equipping models with mechanisms to express confidence in their predictions. This
section provides an overview of key developments in uncertainty estimation, particularly
focusing on Bayesian neural networks (BNNs), ensemble methods, and recent innovations
in lightweight and scalable uncertainty modeling.

Bayesian learning forms the foundation of uncertainty-aware modeling by treating
network parameters as probabilistic entities. A comprehensive survey in [18] outlines vari-
ous algorithmic strategies for BNNs, including variational inference, Markov Chain Monte
Carlo (MCMC), and stochastic gradient methods, offering both theoretical insights and
practical guidance for scalable Bayesian modeling. Among the most influential approaches
is Monte Carlo Dropout (MCDO) [19], which interprets dropout at inference time as approx-
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imate Bayesian inference. MCDO enables uncertainty estimation with minimal architectural
changes and has served as a cornerstone in lightweight Bayesian approximations.

A recent work [20] is a plug-and-play method for retrofitting pretrained models with
Bayesian capabilities using dropout-based techniques and variational inference. This
approach democratizes uncertainty estimation by removing the need for training from
scratch, making it highly practical in industrial settings.

Ensemble-based methods have also gained significant traction due to their empir-
ical robustness. Deep Ensembles [21] is a simple yet powerful method that aggregates
predictions from independently trained models. This approach captures both epistemic
and aleatoric uncertainty and has been widely adopted in diverse domains. However,
the resource cost of training and storing multiple models prompted further research into
more efficient ensemble mechanisms. For example, [22] compared deep ensembles with
committee-based models in molecular dynamics, revealing ensemble superiority in terms
of uncertainty calibration and active learning efficiency.

To address the trade-off between scalability and uncertainty quality, Deep Combina-
torial Aggregation [23] leverages combinatorial sub-networks within a single model to
approximate the diversity of ensembles. Similarly, Credal Deep Ensembles [24] introduced
a credal framework to explicitly model prediction imprecision using credal sets, further
enriching uncertainty representation with a formal decision-theoretic foundation.

Single-model uncertainty estimation has also seen a rapid evolution. The Deterministic
Uncertainty Quantification framework [15] introduced a distance-aware Gaussian process-
inspired mechanism, allowing a single deterministic network to produce uncertainty-aware
outputs. Extending this paradigm, iterative models with feedback loops were adapted
for uncertainty estimation in [25], demonstrating that recurrent-style refinement improves
both predictive performance and uncertainty calibration.

In domain-shifted environments, uncertainty plays a crucial role in identifying dis-
tributional discrepancies. Pseudo-calibration [26] addresses this challenge by integrating
unsupervised domain adaptation with confidence-aware calibration techniques. This
method aligns predictions from source and target domains while correcting for overconfi-
dent misclassifications, yielding better generalization under distribution shift.

Although many of these methods target classification tasks, uncertainty modeling
has also been effectively applied in adjacent areas such as video compression. An efficient
perceptual video compression framework in [27] leverages deep saliency prediction and
just noticeable distortion modeling. While not directly focused on classification, their
work incorporates uncertainty-aware principles by adapting compression quality based
on predicted perceptual sensitivity, emphasizing the broader relevance of uncertainty
estimation across vision tasks.

Together, these approaches illustrate the rich and evolving landscape of uncertainty-
aware classification. From Bayesian approximations and ensembles to deterministic and
domain-adaptive strategies, each method offers unique trade-offs between complexity,
scalability, and uncertainty fidelity. These tools form the methodological backbone for
building reliable and interpretable AI systems capable of operating under ambiguity
and risk.

3. Preliminaries
3.1. Subjective Logic

Uncertainty is a fundamental aspect of human reasoning—no statement about the
world can be known with absolute certainty, and all assertions are inherently subjective.
Subjective logic formalizes this perspective by extending probabilistic logic to explicitly
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model uncertainty through opinions and structured constructs that encode belief masses,
uncertainty, and base rates.

As shown in Figure 1, each opinion represents beliefs over a defined state space
and may include the belief source. Belief masses are subadditive, typically summing to
less than one, reflecting incomplete information. Mathematically, opinions are equivalent
to beta or Dirichlet distributions, with belief masses corresponding to the amount of
supporting evidence. With infinite evidence, beliefs become additive; with finite evidence,
subadditivity persists—capturing the essence of uncertainty in a principled way.

Let X = {x1, x2, . . . , xK} be the state space of cardinality K, and let X ∈ X be a random
variable. The opinion ωX can then be expressed as follows:

ωX = (bX , uX , aX), (1)

where uX is the uncertainty mass, bX is the belief mass distribution such that uX + ∑i bX(xi) = 1,
and aX is the base rate distribution where ∑i aX(xi) = 1. The boldfaced representation
indicates that the corresponding variable is a vector. The projected probability PX(xi) is
calculated as

PX(xi) = bX(xi) + uX · aX(xi). (2)

In the binary case (K = 2), a binomial opinion can be visualized within an equilateral
triangle (Figure 1b), where each point represents a triplet (x1, x2, u) for belief, disbelief,
and uncertainty. The triangle’s vertices correspond to full belief, disbelief, and uncertainty,
with the base rate (aX) marked on the baseline. The expected probability (PX) is found by
projecting the opinion point onto this baseline, parallel to the line connecting the base rate
to the triangle’s apex.

Binomial opinions are classified as uncertain (UB) when u > 0 and dogmatic (DB)
when u = 0, the latter aligning with traditional scalar probabilities.

For K > 2, opinions are multinomial and harder to visualize. The simplest case, K = 3,
forms a trinomial opinion represented as a point inside a tetrahedron (Figure 1c). The
height indicates uncertainty and distances to the side planes correspond to belief masses.
The expected probability is obtained by projecting the opinion point onto the base plane
parallel to the line from the tetrahedron’s apex to the base rate point.

Logic Probability

Probabilistic logic Uncertainty

Subjective logic

(a)

u (uncertainty)

x1 (belief)x2 (disbelief)

.
uX

. .
PX aX

(b)

u (uncertainty)

x1 axisx3 axis
..

x2 axis

. Opinion

Projector

aX PX

(c)

Figure 1. Fundamentals of subjective logic: (a) an intuitive illustration; (b) the representation of a
binomial opinion; (c) the representation of a multinomial opinion.

The general form of a multinomial probability distribution over a state space of
cardinality K is captured by the K-dimensional Dirichlet probability density function
(PDF). A notable special case arises when the space is binary (K = 2), in which the
distribution simplifies to the well-known Beta density function. For compact notation, let
pX = {pX(xi)|1 ≤ i ≤ K} denote the vector of probabilities, and αX = {αX(xi)|1 ≤ i ≤ K}
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the vector of input evidence parameters. The Dirichlet density function over the space X,
denoted as D(pX |αX), is given by

D(pX |αX) =
Γ
(

∑K
i=1 αX(xi)

)
∏K

i=1 Γ(αX(xi))

K

∏
i=1

pX(xi), (3)

where Γ(·) is the gamma function, ∑i pX(xi) = 1, and αX(xi) = rX(xi) + WaX(xi), with
rX(xi) representing the number of observations of xi, aX(xi) its base rate, and W the
non-informative prior weight.

Over the same space X, the multinomial opinion ωX = (bX , uX , aX) and the Dirichlet
PDF D(pX |rX , aX) are equivalent through the following mapping:

bX(xi) =
rX(xi)

W + ∑i rX(xi)
, (4)

uX =
W

W + ∑i rX(xi)
. (5)

3.2. Opinion Fusion

In many real-world applications, multiple sources contribute distinct sets of evidence,
requiring effective fusion techniques to integrate the information. Consider a scenario
involving two AI models (illustrated in Figure 2), which results in two different fusion
strategies depending on the temporal relationship between their observations:

1. Cumulative fusion: When the AI models operate during non-overlapping time in-
tervals, their outputs are considered independent. In this case, the most appropriate
approach is to sum up the evidence collected from both models. This additive strategy
forms the foundation of cumulative fusion.

2. Averaging fusion: When both models operate simultaneously, their outputs are de-
pendent, and a different fusion method is required. In this situation, averaging their
outputs is the appropriate strategy, leading to averaging fusion.

Let ω1
X =

(
b1

X , u1
X , aX

)
and ω2

X =
(
b2

X , u2
X , aX

)
be the two opinions, and let

D
(
pX
∣∣r1

X , aX
)

and D
(
pX
∣∣r2

X , aX
)

be their corresponding Dirichlet PDFs. The fused opinions
in the two cases are given as follows:

ω⋄
X(cumulative) = (b⋄

X , u⋄
X , aX) ∼ D(pX |α⋄

X) = D
(

pX

∣∣∣r1
X + r2

X , αX

)
, (6)

ω⋄
X(averaging) = (b⋄

X , u⋄
X , aX) ∼ D(pX |α⋄

X) = D

(
pX

∣∣∣∣∣ r1
X + r2

X
2

, αX

)
. (7)

View 1

e.g., images

View 2

e.g., lab settings

AI model 1

AI model 2

D 𝐩𝑋|𝜶𝑋
1

D 𝐩𝑋|𝜶𝑋
2

Opinion 1

𝜔𝑋
1 = 𝐛𝑋

1 , 𝑢𝑋
1 , 𝐚𝑋

Opinion 2

𝜔𝑋
2 = 𝐛𝑋

2 , 𝑢𝑋
2 , 𝐚𝑋

Fusion
Opinion ⋄

𝜔𝑋
⋄ = 𝐛𝑋

⋄ , 𝑢𝑋
⋄ , 𝐚𝑋

Cumulative fusion •

Averaging fusion •

Figure 2. Illustration of opinion fusion.

4. Proposed Method
Figure 3 depicts the proposed pseudo-multiview learning model (Figure 3c) alongside

two benchmark models: the base model (Figure 3a) and the concatenation model (Figure 3b).
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The task involves binary classification using RGB input images of size 224 × 224. A distinct
difference of the proposed model is its use of subjective logic instead of the conventional
softmax function employed by the benchmark models.

Neural networks are capable of extracting informative evidence from input data,
which can then be used to form classification opinions [28]. A conventional neural net-
work classifier can be seamlessly adapted into an evidence-based classifier with minimal
modifications. Specifically, in Figure 3c, the typical softmax layer is replaced by ReLU
activations to ensure that the network produces non-negative outputs suitable for opinion
fusion based on subjective logic. These ReLU outputs are interpreted as an evidence vector
eX, from which Dirichlet distribution parameters are computed as αX = eX + 1. Subse-
quently, the averaging opinion fusion strategy (depicted in Figure 2) is applied to obtain
the final output.
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Figure 3. Illustration of the proposed pseudo-multiview learning and two benchmark models:
(a) base model. (b) Concatenation model. (c) Proposed pseudo-multiview learning model. Notations:
B = batch size, Conv = convolutional layer, BatchNorm = batch normalization, ReLU = rectified
linear unit, MaxPool = max pooling, Dense = fully connected layer, SL = subjective logic.

To enable effective training, the standard cross-entropy loss used in image classi-
fication is modified to suit the evidence-based framework. The revised loss function,
shown in Equation (9), incorporates the digamma function ψ(·), the Dirichlet strength
S = ∑K

i=1 αX(xi), and the ground truth label yi. This formulation encourages the model to
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accumulate more evidence for the correct class during training. However, on its own, it
does not penalize evidence accumulation for incorrect classes. To mitigate this problem,
an additional KL divergence term, shown in Equation (10), is introduced, using the ad-
justed Dirichlet parameters α̃X , which helps preserve evidence for the correct class while
suppressing it for incorrect ones.

Given the Dirichlet parameter αX(xi) for each sample of xi, the complete sample-
specific loss function is presented in Equation (11), with λ serving as a balancing coefficient
between the evidence-encouraging and evidence-penalizing components.

To ensure that all views or input perspectives contribute meaningful and consistent
opinions, the model employs a multi-task learning strategy. This approach utilizes a
combined overall loss function, shown in Equation (11), which promotes collaborative
learning across views to improve the quality of the aggregated opinion.

LmCE(αX) =
K

∑
i=1

yi(ψ(S)− ψ(αX)), (8)

KL(D(pX |α̃X)||D(pX |1)) = log
Γ
(

∑K
i=1 α̃X(xi)

)
Γ(K)∏K

i=1 Γ(αX(xi))
(9)

+
K

∑
i=1

(α̃X(xi)− 1)

(
ψ(α̃X(xi))− ψ

(
K

∑
i=1

α̃X(xi)

))
,

L(αX) = LmCE(αX) + λ · KL(D(pX |α̃X)||D(pX |1)), (10)

Loverall =
K

∑
i=1

(
L(αX(xi)) +

N

∑
j=1

L(αj
X(xi))

)
. (11)

5. Experimental Results
5.1. Experimental Settings

In this section, we evaluate the proposed model using four real-world datasets:
BreakHis [29], Oxford-IIIT [30], Chest X-ray [31], and a Plant Leaf Disease dataset [32].

The BreakHis dataset contains 9109 microscopic images of breast tumor tissue collected
from 82 patients, captured under four different magnification levels (40×, 100×, 200×, and
400×). It includes 2480 benign and 5429 malignant samples, offering a rich and diverse set
for binary classification tasks.

The Oxford-IIIT pet dataset includes 37 categories of cat and dog breeds, with approx-
imately 200 images per class. These images exhibit significant variation in scale, pose, and
lighting conditions. Each image is annotated with ground truth breed labels, making the
dataset well-suited for fine-grained visual recognition.

The Chest X-ray dataset consists of 5863 radiographic images labeled as either pneu-
monia or normal. These images were obtained from pediatric patients aged one to five years
at Guangzhou Women and Children’s Medical Center. All X-rays were captured as part
of routine clinical procedures. To ensure high data quality, low-resolution or unreadable
scans were excluded. Diagnoses were validated by two expert radiologists, with a third
expert reviewing the evaluation set to minimize labeling errors and improve the reliability
of the dataset for training and testing AI models.

Lastly, the Plant Leaf Disease dataset features approximately 87,000 images of crop
leaves, representing both healthy samples and those affected by various diseases. The
dataset spans 38 distinct classes, enabling robust evaluation of classification in agricul-
tural diagnostics.

All experiments were conducted with three models: the base model, the concatenation
model, and the proposed pseudo-multiview learning model. Five-fold cross-validation
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was employed, and hyperparameter tuning was performed using the Microsoft Neural
Network Intelligence toolkit [33]. The learning rate and batch size were searched over the
ranges [10−4, 10−1] and {8, 32, 64, 256, 512, 1024}, respectively. Early stopping was applied,
terminating training if no improvement was observed over ten consecutive epochs.

5.2. Comparison with Base and Concatenation Models

The experimental results, summarized in Table 1, clearly demonstrate the effectiveness
of the proposed pseudo-multiview learning method based on subjective logic. The evalua-
tion spans four real-world datasets across diverse domains, using both AUC and accuracy
as performance metrics. The proposed method demonstrates consistent improvement
over both the base and concatenation baselines, particularly in complex or ambiguous
classification scenarios.

Table 1. Evaluation of classification performance on different real-world datasets. Best results are boldfaced.

Dataset Metric Base Concatenation Proposed

BreakHis

40×

AUC

0.566 ± 0.027 0.586± 0.056 0.584 ± 0.041
100× 0.571 ± 0.099 0.631 ± 0.055 0.648± 0.050
200× 0.597 ± 0.141 0.693 ± 0.014 0.694± 0.025
400× 0.641 ± 0.072 0.651 ± 0.050 0.677± 0.029

Oxford-IIIT 0.651 ± 0.059 0.768 ± 0.091 0.808± 0.029
Chest X-ray 0.901 ± 0.018 0.898 ± 0.024 0.901± 0.014

Plant leaf disease 0.781 ± 0.078 0.991± 0.005 0.988 ± 0.003

BreakHis

40×

ACC

0.570 ± 0.024 0.599 ± 0.049 0.613± 0.044
100× 0.560 ± 0.080 0.588 ± 0.034 0.623± 0.076
200× 0.477 ± 0.187 0.589 ± 0.018 0.657± 0.045
400× 0.558 ± 0.131 0.581 ± 0.038 0.621± 0.035

Oxford-IIIT 0.608 ± 0.040 0.712 ± 0.054 0.725± 0.033
Chest X-ray 0.809 ± 0.016 0.834 ± 0.015 0.861± 0.013

Plant leaf disease 0.699 ± 0.162 0.959 ± 0.011 0.962± 0.004

5.2.1. BreakHis Dataset (40× to 400× Magnifications)

The proposed method consistently outperforms the base and concatenation ap-
proaches across all magnifications in terms of AUC. The performance gap becomes more
pronounced at higher magnifications. For example, compared with the base model, the gap
increases from 0.018 at 40× to 0.036 at 400×. This improvement highlights the robustness
of the proposed method to finer-grained visual variations.

Similarly, significant improvements are observed in accuracy. For example, at 200×
magnification, the proposed method achieves 0.657 accuracy, a substantial improvement
over the base (0.477) and concatenation (0.589), indicating a strong ability to handle noisy
and heterogeneous data.

5.2.2. Oxford-IIIT Dataset

The proposed method achieves an AUC of 0.808 and an accuracy of 0.725, correspond-
ing to improvements of 0.157 (24.1%) and 0.117 (19.2%), respectively, over the base model.
Compared with the concatenation approach, the improvements are 0.04 (5.2%) in AUC
and 0.013 (1.8%) in accuracy. This dataset, which includes substantial intra-class varia-
tion and cluttered backgrounds, benefits notably from the proposed uncertainty-aware
fusion strategy.

5.2.3. Chest X-Ray Dataset

Although all methods perform well in AUC, with values around 0.9, the observed
improvements in accuracy—0.052 (6.4%) and 0.027 (3.2%) compared with base and concate-
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nation approaches, respectively—suggest that the proposed method makes more accurate
and confident predictions. This gain may be attributed to its enhanced ability to handle
ambiguous and borderline cases.

5.2.4. Plant Leaf Disease Dataset

This domain exhibits the most dramatic improvement. The AUC rises from 0.781
(base) to 0.988 (proposed), and the accuracy rises from 0.699 to 0.962. The gains are
especially notable, indicating the strength of the proposed method in leveraging subtle
multiview features when uncertainty is high (for example, due to visual similarity between
disease symptoms).

The concatenation approach, while improving over the base model in many cases, fails
to fully exploit the complementary nature of multiview features, likely due to its simplistic
feature-level fusion. It does not model uncertainty and hence may produce overconfident
or unreliable predictions, especially under distribution shifts or ambiguous shifts.

In contrast, the proposed method integrates subjective logic to model belief, disbelief,
and uncertainty masses derived from individual views. This characteristic not only results
in higher predictive performance but also reflects greater model calibration and robustness.
Furthermore, the most significant improvements are observed in datasets with complex
visual characteristics, underscoring the practical utility of the proposed method in real-
world applications that involve noisy, heterogeneous, or multiscale data.

5.3. Comparison with Uncertainty-Aware Methods

In this section, we compare the proposed method with uncertainty-aware models,
including Monte-Carlo Dropout (MCDO) [19], Uncertainty-aware Attention (UA) [34], and
Evidential Deep Learning (EDL) [35]. MDCO treats dropout at inference time as a Bayesian
approximation, enabling the estimation of predictive uncertainty through multiple stochas-
tic forward passes. UA extends this idea by incorporating uncertainty directly into the
attention mechanism, allowing models to focus on more reliable features while providing
interpretable insights. EDL further advances uncertainty quantification by modeling predic-
tions as evidence distributions over class probabilities, enabling the network to output both
belief and uncertainty without requiring sampling. These methods form the foundation for
robust and trustworthy AI systems, particularly in high-stakes applications.

All three uncertainty-aware methods—MCDO, UA, and EDL—operate on single-view
data and are implemented based on the base model illustrated in Figure 3a. MCDO in-
troduces no additional parameters, while UA and EDL slightly increase the parameter
count due to the use of attention modules and minor changes to the output layer, re-
spectively. Table 2 presents a comparative evaluation of the proposed method against
these approaches.

5.3.1. BreakHis Dataset (40× to 400× Magnifications)

The proposed method consistently outperforms MCDO, UA, and EDL at all magnifi-
cation levels. The performance margin becomes more pronounced at higher magnifications.
For example, at 400×, the proposed method achieves an AUC of 0.677, compared with
0.670 (EDL), 0.659 (UA), and 0.638 (MCDO). In terms of accuracy, the proposed method
also shows the highest score across all magnifications. Notably, at 200×, it achieves 0.657,
significantly surpassing EDL (0.647), UA (0.635), and MCDO (0.617).

The consistent superiority of the proposed method across all scales demonstrates its
robustness to high-resolution and complex visual features, where uncertainty modeling
plays a crucial role.
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Table 2. Evaluation of classification performance on different real-world datasets using uncertainty-
aware methods. Best results are boldfaced.

Dataset Metric MCDO UA EDL Proposed

BreakHis

40×

AUC

0.561 ± 0.035 0.576 ± 0.031 0.579 ± 0.029 0.584± 0.041
100× 0.600 ± 0.032 0.622 ± 0.030 0.633 ± 0.028 0.648± 0.050
200× 0.665 ± 0.025 0.681 ± 0.021 0.688 ± 0.020 0.694± 0.025
400× 0.638 ± 0.031 0.659 ± 0.029 0.670 ± 0.027 0.677± 0.029

Oxford-IIIT 0.772 ± 0.033 0.791 ± 0.027 0.798 ± 0.025 0.808± 0.029
Chest X-ray 0.876 ± 0.015 0.889 ± 0.012 0.897 ± 0.012 0.901± 0.014

Plant leaf disease 0.961 ± 0.014 0.973 ± 0.011 0.981 ± 0.009 0.988± 0.003

BreakHis

40×

ACC

0.578 ± 0.030 0.596 ± 0.026 0.607 ± 0.024 0.613± 0.044
100× 0.590 ± 0.027 0.608 ± 0.025 0.617 ± 0.026 0.623± 0.076
200× 0.617 ± 0.022 0.635 ± 0.019 0.647 ± 0.018 0.657± 0.045
400× 0.586 ± 0.034 0.603 ± 0.030 0.615 ± 0.028 0.621± 0.035

Oxford-IIIT 0.681 ± 0.028 0.704 ± 0.023 0.712 ± 0.021 0.725± 0.033
Chest X-ray 0.825 ± 0.016 0.842 ± 0.015 0.853 ± 0.014 0.861± 0.013

Plant leaf disease 0.931 ± 0.013 0.944 ± 0.010 0.952 ± 0.008 0.962± 0.004

5.3.2. Oxford-IIIT Dataset

The proposed method achieves the highest AUC of 0.808, slightly outperforming ELD
(0.798) and UA (0.791). Similarly, it attains the best accuracy of 0.725, making a notable
improvement over MCDO (0.681). Given the high intra-class variation in this dataset, the
results suggest that the proposed method offers improved discriminative power and more
reliable predictions.

5.3.3. Chest X-Ray Dataset

All methods perform relatively well on this dataset, with marginal differences in AUC.
The proposed method achieves an AUC of 0.901, which is comparable to EDL (0.879) and
slightly higher than UA (0.889) and MCDO (0.876). A similar trend for accuracy is observed,
where the proposed method achieves 0.861, demonstrating its ability to handle subtle
diagnostic features more reliably.

5.3.4. Plant Leaf Disease Dataset

Although all methods perform well on this low-uncertainty dataset, the proposed
model achieves the highest scores in both AUC and accuracy. This result highlights that
the proposed method remains beneficial even in domains with low uncertainty, reinforcing
its strong generalization capability.

Overall, MCDO offers a simple yet effective approximation of Bayesian inference, but
its performance lags behind due to its limited expressiveness and reliance on sampling. UA
improves attention by considering uncertainty but still lacks full probabilistic modeling.
EDL delivers stronger uncertainty modeling through evidential theory, often ranking sec-
ond and comparable results. The proposed method, by explicitly modeling belief, disbelief,
and uncertainty through subjective logic, achieves more reliable and calibrated predic-
tions. Its consistent dominance in both AUC and accuracy across datasets underscores
its effectiveness.

5.4. Model Size Evaluation

The parameter count comparison in Table 3 provides important insight into the trade-
off between model complexity and performance. The base model has the smallest footprint,
with 409, 718 parameters, shared also by MCDO, which does not introduce additional
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parameters as it only modifies inference behavior using dropout. UA and EDL, on the other
hand, slightly increase the parameter count to 430, 204 and 413, 816, respectively, due to the
inclusion of attention mechanisms and evidential output layers.

The concatenation model shows a substantial jump in complexity, reaching 1, 518, 658
parameters—nearly 3.7× the size of the base model—because it stacks multiple feature
extractors without fusion optimization. Despite this increase, it does not consistently
outperform lighter uncertainty-aware models, indicating inefficiency in its parameter usage.

The proposed method, with 766, 020 parameters, strikes a balance between model
complexity and performance. Although it is not the smallest model, it remains significantly
more efficient than the concatenation model, using only about 50% of its parameters.
Importantly, the proposed method consistently delivers the best performance across various
real-world datasets in terms of both AUC and accuracy. This highlights the effectiveness of
its uncertainty modeling strategy, which leverages subjective logic to fuse evidence from
multiple sources in a parameter-efficient manner.

In summary, the proposed method offers a compelling trade-off: it avoids the redun-
dancy of the concatenation model while outperforming all other methods—including those
with fewer parameters—by intelligently incorporating uncertainty into the learning process.

Table 3. Parameter counts of different models.

Model Parameter Count

Base 409,718
Concatenation 1,518,658

MCDO 409,718
UA 430,204
EDL 413,816

Proposed 766,020

5.5. Convergence Evaluation

To evaluate the training efficiency of different models, we compare their convergence
behaviors across multiple datasets, as illustrated in Figure 4. The evaluation includes
BreakHis (with magnifications of 40×, 100×, 200×, and 400×), Oxford-IIIT, Chest X-ray,
and Plant Leaf Disease datasets.

Convergence speed is measured by the number of epochs required for each model to
reach a stable accuracy. Among the models, the base model exhibits the fastest convergence,
followed by MCDO, EDL, and UA. The proposed method converges more slowly but still
faster than the concatenation approach, which requires the most training epochs to stabilize.
This trend is consistent across all datasets.

Although the proposed method converges more slowly, it consistently achieves the
highest final performance across all datasets, followed by EDL, Concatenation, UA, MCDO,
and Base. These results suggest that while faster-converging models such as Base and
MCDO may offer early training efficiency, they tend to underperform in terms of final
accuracy compared with slower-converging but more robust methods such as the proposed
model and EDL.

Overall, these observations highlight a trade-off between convergence speed and
model performance, underscoring the importance of selecting a model that aligns with the
desired balance between training efficiency and classification reliability.
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Figure 4. Comparison of model convergence across different datasets. (a) BreakHis 40×; (b) BreakHis
100×; (c) BreakHis 200×; (d) BreakHis 400×; (e) Oxford-IIIT; (f) Chest X-ray; (g) Plant Leaf Disease.

5.6. Ablation Study

To further validate the robustness and effectiveness of the proposed method, we
conduct an ablation study focusing on two critical aspects: the uncertainty threshold and
the model’s behavior under noisy input conditions. First, we examine the sensitivity of
the model to the uncertainty threshold, which controls the confidence level required for
making predictions. While the main results were obtained using a fixed threshold of 0.5,
we systematically varied this threshold from 0 to 1 to assess its influence on classification
performance and model calibration. Second, we evaluate the model’s resilience to input cor-
ruption by introducing Gaussian noise with zero mean and increasing standard deviations
(ranging from 0 to 109) to one of the input views. This experiment simulates real-world
scenarios with degraded or unreliable input and allows us to analyze how well the model
maintains predictive accuracy and uncertainty estimation under challenging conditions.
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5.6.1. Uncertainty Threshold

Figure 5 illustrates the classification accuracy of the proposed method across different
real-world datasets as the uncertainty threshold varies from 0 to 1. Overall, the performance
improves with increasing threshold values. At low thresholds (0 to 0.2), most uncertain
predictions are included, leading to a slight drop in accuracy. In contrast, at high thresholds
(0.8 to 1), only high-confidence predictions are retained, resulting in improved accuracy
at the cost of fewer predictions being made. The threshold of 0.5 represents a balanced
trade-off and is therefore used throughout the experiments in this study. Notably, the most
significant accuracy gain is observed on the BreakHis dataset at 100× magnification, while
the gain is minimal on the Plant Leaf Disease dataset, likely due to differences in data noise
and ambiguity.
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Figure 5. Classification accuracy on different real-world datasets with varying uncertainty thresholds.

5.6.2. Performance on Noisy Input

To evaluate the robustness of uncertainty-aware models under noisy conditions, we
simulate a real-world scenario where one of the two input views is corrupted by addi-
tive Gaussian noise with zero mean and varying standard deviations (10−2 ≤ σ ≤ 109).
Figure 6 presents the classification accuracy of four methods across four real-world datasets:
BreakHis at 40×, 100×, 200×, and 400× magnifications; Oxford-IIIT; Chest X-ray; and
Plant Leaf Disease.

Across all datasets, the proposed method consistently achieves the highest accuracy
under low to moderate noise levels (σ ≤ 103). While all methods experience significant
performance degradation as noise level increases, the proposed method shows the subtlest
drop in accuracy. For example, on the BreakHis 200× dataset (Figure 6c), the accuracy of
the proposed method drops only modestly from 0.657 (σ = 0) to 0.620 (σ = 103), remaining
significantly higher than MCDO (0.350), UA (0.370), and EDL (0.390) at the same noise level.

As the standard deviation increases beyond 103, all models begin to show more
pronounced degradation. Nevertheless, the proposed method continues to outperform the
baselines. On the Chest X-ray dataset (Figure 6f), for example, it maintains an accuracy of
0.670 at σ = 104, compared with 0.470 (EDL), 0.460 (UA), and 0.440 (MCDO). Even under
extreme noise (σ = 109), the proposed method retains a relatively stable accuracy of 0.270,
while MCDO, UA, and EDL drop below 0.200.

These findings highlight the superior robustness of the proposed method against noisy
inputs. By explicitly modeling belief, disbelief, and uncertainty through subjective logic, the
model is better equipped to suppress the influence of corrupted features. Compared with
MCDO, which relies on stochastic dropout sampling, UA, which focuses on uncertainty-
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aware feature weighting, and EDL, which estimates evidence-based distributions, the
proposed approach provides a more principled mechanism for handling data uncertainty.

Overall, the proposed method offers a favorable trade-off between prediction accuracy
and robustness, making it particularly suitable for real-world applications where sensor
noise or corrupted data is common.
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Figure 6. Performance comparison on input data with different noise levels. (a) BreakHis 40×;
(b) BreakHis 100×; (c) BreakHis 200×; (d) BreakHis 400×; (e) Oxford-IIIT; (f) Chest X-ray; (g) Plant
Leaf Disease.

6. Conclusions
This paper introduces a pseudo-multiview learning framework that leverages sub-

jective logic to fuse multiple feature representations at the evidence level, addressing the
limitations of traditional concatenation-based fusion. By modeling belief, disbelief, and
uncertainty, the proposed approach dynamically weights different feature views according
to their reliability, enabling more robust and interpretable classification decisions. Experi-
mental results across a range of real-world datasets validate the effectiveness of the method,
showing consistent improvements in both AUC and accuracy over the base and concatena-
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tion models. Furthermore, comparative evaluations with state-of-the-art uncertainty-aware
methods demonstrate the superior performance of the proposed framework, particularly
in challenging scenarios.

In addition, ablation studies were conducted to analyze the influence of uncertainty
threshold settings and the model’s behavior under noisy input conditions. The results
reveal that the proposed method maintains high performance even when one input view
is corrupted by noise, exhibiting stronger robustness than single-view uncertainty-aware
approaches. This resilience highlights the advantage of leveraging multiple complementary
views and fusing them at the evidence level.

However, the proposed method is not without limitations. First, although subjective
logic offers a formal treatment of uncertainty, the model’s internal decision process remains
difficult to interpret from a human-centric perspective, limiting transparency. Second, the
evidence-based fusion process, particularly the estimation of Dirichlet parameters and
variational modeling, introduces additional computational complexity compared with
simpler fusion strategies. Third, the current framework assumes conditional independence
between input views and does not explicitly model potential correlations, which may lead
to suboptimal fusion when strong inter-dependencies exist. Addressing these limitations
represents a promising direction for future research aimed at improving interpretability,
efficiency, and fusion fidelity.
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