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ABSTRACT

Background: Wet age-related macular degeneration (wet AMD) is a vision-threatening condition 
that typically develops with age. The standard treatment involves intravitreal injections, but 
suboptimal timing of these injections can result in severe outcomes, including irreversible 
vision loss. While numerous studies have focused on the detection of wet AMD, the prediction 
of its recurrence remains relatively underexplored. Existing approaches to recurrence prediction 
primarily rely on a single modality—optical coherence tomography (OCT)—and have achieved 
only limited prognostic accuracy. Therefore, there is a pressing need to comprehensively 
investigate recurrence prediction in wet AMD to improve prognostic performance.
Methods: Compared to the existing studies, we collected 3 different types of images from 
the patients with wet AMD; OCT vertical, OCT horizontal, and fundus. We first trained and 
evaluated various convolutional neural network-based models using single-modality data 
which are pre- and post-treatment versions of each type of the collected images. We also 
evaluated a dual-modality scenario using the 2 optimal performance modalities, which are 
fundus post-treatment and OCT horizontal pre-treatment. Finally, we examined a multi-
modality case which used the entire 6 modalities in our study for wet AMD recurrence 
prediction. Performance was assessed using area under the receiver operating characteristic 
curve (AUC) with several classification performance metrics.
Results: Among single-modality approaches, the OCT horizontal pre-treatment model 
achieved an AUC of 0.617 ± 0.045, while the fundus post-treatment model reached an 
accuracy of 0.612 ± 0.008. The dual-modality model combining fundus post-treatment and 
OCT horizontal pre-treatment images attained an AUC of 0.622 ± 0.037, whereas the multi-
modality model incorporating all imaging sources yielded an AUC of 0.564 ± 0.026.
Conclusion: Based on our experimental results with 3 different imaging modalities, we found 
that the fundus-only model achieved the optimal accuracy, and the multimodal combination 
of OCT and fundus yielded the highest AUC, indicating that considering multimodal imaging 
data would be critical in wet AMD recurrence prediction.
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INTRODUCTION

Wet age-related macular degeneration (AMD) is a leading cause of vision loss in older adults, 
characterized by the abnormal growth of blood vessels in the subretinal or intraretinal 
layers, which can ultimately lead to severe vision impairment or blindness.1 The conventional 
treatment involves intravitreal injections of anti-vascular endothelial growth factor agents, 
which suppress the growth of new blood vessels. While periodic injections can effectively 
control the disease, their effects are often temporary. Recurrence occurs in a significant 
proportion of patients within a few months after treatment cessation, and repeated 
recurrences can accelerate retinal structural damage and reduce treatment responsiveness. 
Therefore, regular monitoring and timely administration of injections are essential for 
preventing recurrence and preserving vision.

Managing patients with wet AMD poses significant challenges, as it is neither feasible 
for patients to visit the hospital for every assessment nor for ophthalmologists to be 
continuously involved in monitoring disease progression. Previous studies have compared 
different treatment regimens, including fixed monthly dosing and pro re nata (as-needed) 
injections, for AMD management.2 These studies have shown that fixed monthly dosing leads 
to better treatment outcomes. However, this approach is associated with substantial financial 
and time burdens due to the high cost of intravitreal injections.

To address these challenges, alternative treatment strategies, such as the treat-and-extend 
(T&E) protocol, have been proposed.3 The T&E approach involves administering injections at 
regular intervals initially and gradually extending the treatment intervals based on individual 
disease progression and treatment response. While promising, this method still presents 
notable challenges, including variability in individual patient responses and the risk of 
vision deterioration if intervals are extended excessively. Furthermore, because treatment 
intervals are adjusted based on individual needs, there is no standardized protocol or 
universally accepted guideline, leading to variations in treatment decisions depending on the 
ophthalmologist or medical institution. Importantly, assessing the likelihood of wet AMD 
recurrence remains a significant challenge, even for experienced ophthalmologists. Therefore, 
there is a pressing need for an objective and reliable evaluation tool that can accurately identify 
patients at risk of recurrence, reducing the reliance on subjective clinical judgment.

With recent advancements in artificial intelligence (AI), its applications have expanded 
across various medical fields, including ophthalmology.4,5 AI has been increasingly utilized 
in the assessment of fundus diseases, including wet AMD.6 While substantial research has 
been conducted on wet AMD, there is a more pressing need for studies focusing on regular 
monitoring and recurrence prediction rather than merely disease detection.

However, most existing studies have primarily concentrated on diagnosing wet AMD and 
evaluating disease severity,7,8 with relatively few addressing the prediction of recurrence.  
The scarcity of AI-driven studies targeting wet AMD relapse highlights the need for 
foundational investigations and diverse methodological approaches. Recent advancements 
in AI and deep learning have demonstrated potential in providing objective assessments 
of disease progression.8 Nevertheless, existing algorithms rely solely on optical coherence 
tomography (OCT) imaging and their predictive performance remains insufficient for 
reliable clinical use.9,10 Motivated by these shortcomings, it is essential to explore a variety 
of predictive approaches using additional imaging modalities. Accordingly, we develop 
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a multimodal framework that integrates OCT pre-/post-treatment with fundus images for 
recurrence prediction.

METHODS

The Institutional Review Board (IRB) of Kim’s Eye Hospital (Seoul, Korea) approved this 
retrospective study (IRB approval No. 2023-02-004), which was conducted in accordance 
with the tenets of the Declaration of Helsinki. Because of its retrospective design, the 
requirement for informed consent was exempted by the Kim’s Eye Hospital IRB. Clinical data 
were collected at Kim’s Eye Hospital, and the AI models were developed at CHA University 
School of Medicine (Seongnam, Korea).

Data collection
We enrolled treatment-naïve patients diagnosed with neovascular AMD between January 2013 
and June 2021. Each patient received 3 consecutive loading injections of either ranibizumab 
(0.5 mg/0.05 mL, Lucentis®; Genentech Inc., San Francisco, CA, USA) or aflibercept (2.0 
mg/0.05 mL, Eylea®; Regeneron, Tarrytown, NY, USA). Patients were excluded if they met any 
of the following criteria: (1) residual intraretinal (IRF) or subretinal fluid (SRF) after initial 
treatment, (2) follow-up duration of less than 12 months after initial treatment. (3) history of 
vitreoretinal or glaucoma surgery, and (4) poor OCT image quality that could interfere with 
AI learning. A total of 399 patients (238 males and 161 females; mean age 70.21 ± 8.38 years) 
satisfied these criteria. After the loading injections, follow-up examinations were scheduled 
every 1–2 months. Lesion reactivation was defined as the new appearance of IRF, SRF, or 
macular hemorrhage on OCT, fundus photography, or clinical fundus examination (Table 1).

Preprocessing
For each subject, medical imaging was acquired immediately before the first and immediately 
after the third intravitreal injection, corresponding to the pre- and post-treatment stages of 
a 3-session wet AMD regimen. This protocol yielded 6 images per participant: one fundus 
photograph and horizontal and vertical OCT scans at each time point. Fundus images 
measured 940 × 840 pixels, and OCT images measured 1,000 × 650 pixels. All images were 
uniformly resized to 448 × 448 pixels and standardized by Z-score normalization using the 
ImageNet mean and standard deviation.11 Recurrence status within 12 months post-treatment 
served as the binary classification target: 242 of the 399 patients exhibited recurrence, 
whereas 157 did not. To augment the training set, we applied horizontal flips, adjusted 
brightness within a range of 0.9 to 1.1, and performed random crops retaining 95–100% 
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Table 1. Participant characteristics
Participant characteristics Description (n = 399)
Sex

Male 238 (59.6%)
Female 161 (40.4%)

Age (yr) 70.21 ± 8.38
Incidence rate by anti-VEGF agent

Ranibizumab 57.90%
Aflibercept 63.40%

Values are presented as number (%) or mean ± standard deviation.
Baseline demographic and clinical characteristics of the study population. Incidence rate refers to the proportion 
of patients who experienced disease recurrence following the administration of each anti-VEGF agent during the 
observation period.
VEGF = vascular endothelial growth factor.



of the original area, followed by resizing back to 448 × 448 pixels. Model robustness and 
generalizability were assessed via 5-fold cross-validation.

Convolutional neural network (CNN)-based architecture for wet AMD 
recurrence prediction
Fig. 1A presents the single-modality approach, which employs one of the 6 image types to 
predict wet AMD recurrence. In the dual-modality scheme (Fig. 1B), the 2 highest-performing 
modalities—fundus post-treatment, OCT horizontal pre-treatment—are combined by 
concatenating their feature maps to enhance predictive performance.12,13 The multi-modality 
scheme (Fig. 1C) unites all 6 imaging inputs to exploit the comprehensive visual data. For 
each configuration, Inception-v3,14 EfficientNet-b0,15 and EfficientNet-v216 were used as the 
backbone CNN architectures.
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Fig. 1. Overview of the model architectures. (A) Single-modality architecture employing a single image for prediction of recurrence. (B) Dual-modality 
architecture integrating feature maps from the 2 highest-performing modalities. (C) Multi-modality architecture concatenating feature maps from all 6 images 
(Fundus pre-/post-treatment and optical coherence tomography horizontal/vertical pre-/post-treatment) for enhanced classification performance. 
CNN = convolutional neural network.



Experimental setup
The training procedure was configured to maximize AUC, and supplementary thresholds for 
sensitivity and specificity were determined via the Youden Index.17 We employed 5-fold cross-
validation by partitioning the dataset into 5 equally sized folds—using 4 folds for training and 
one for validation in each iteration—and evaluated model performance using AUC. All models 
were implemented in PyTorch (Meta AI, New York, NY, USA) on 64-bit systems. Experiments 
were performed on 2 server configurations: the first featured an NVIDIA Quadro RTX 8000 
GPU (NVIDIA, Santa Clara, CA, USA) paired with an Intel® Xeon® Gold 6226R CPU (2.90 GHz, 
16 cores; Intel, Santa Clara, CA, USA), and the second utilized an NVIDIA GeForce RTX 4090 
GPU (NVIDIA) alongside an Intel® Xeon® Silver 4309Y CPU (2.80 GHz, 8 cores; Intel).

RESULTS

Several convolutional neural network architectures were employed in PyTorch, including 
Inception-v3, EfficientNet-b0, EfficientNet-v2. Models were selected according to 5-fold 
cross-validated AUC. EfficientNet-v2 was adopted for both the fundus pre-/post-treatment 
and OCT vertical pre-/post-treatment datasets, Inception-v3 for the OCT horizontal pre-
treatment dataset, and EfficientNet-b0 for the OCT horizontal post-treatment dataset. 
As shown in Table 2, all models achieved AUCs exceeding 0.56. Among single-modality 
inputs, the OCT horizontal pre-treatment configuration attained the highest AUC (0.617 ± 
0.045). The dual-modality model, combining fundus post-treatment and OCT horizontal 
pre-treatment images, yielded an AUC of 0.622 ± 0.037, while the multi-modality model 
integrating all 6 image types achieved an AUC of 0.564 ± 0.026, indicating no appreciable 
advantage over the single-modality approaches.

DISCUSSION

This study systematically evaluates the performance of various CNN models in predicting the 
recurrence of wet AMD using multiple ophthalmic imaging modalities.

The findings suggest that single image modalities generally achieve superior predictive 
accuracy compared to multi-modality approach. Among the single image datasets, OCT 
horizontal pre-treatment exhibited the highest AUC at 0.617. This observation raises the 
possibility that OCT horizontal pre-treatment images may capture structural changes 
relevant to recurrence prediction. In contrast, the multi-modality approach, which integrates 
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Table 2. Performance comparison of wet-age-related macular degeneration recurrence prediction across single-, dual-, and multi-modality inputs
Input Dataset AUC Accuracy Sensitivity Specificity F1 score
Single-modality Fundus pre-treatment 0.576 ± 0.032 0.476 ± 0.090 0.230 ± 0.277 0.852 ± 0.203 0.343 ± 0.203

Fundus post-treatment 0.598 ± 0.051 0.612 ± 0.008 0.921 ± 0.158 0.131 ± 0.263 0.737 ± 0.039
OCT horizontal pre-treatment 0.617 ± 0.045 0.566 ± 0.122 0.547 ± 0.362 0.592 ± 0.266 0.523 ± 0.282
OCT horizontal post-treatment 0.592 ± 0.074 0.519 ± 0.096 0.396 ± 0.331 0.707 ± 0.302 0.517 ± 0.205
OCT vertical pre-treatment 0.580 ± 0.053 0.546 ± 0.067 0.531 ± 0.301 0.565 ± 0.339 0.533 ± 0.210
OCT vertical post-treatment 0.575 ± 0.019 0.562 ± 0.081 0.684 ± 0.366 0.365 ± 0.369 0.719 ± 0.039

Dual-modality Fundus post-treatment & OCT horizontal pre-treatment 0.622 ± 0.037 0.536 ± 0.088 0.513 ± 0.381 0.576 ± 0.392 0.484 ± 0.271
Multi-modality All data 0.564 ± 0.026 0.549 ± 0.082 0.653 ± 0.407 0.399 ± 0.452 0.682 ± 0.109
Metrics include AUC, accuracy, sensitivity, specificity, and F1 score; values are reported as mean ± standard deviation over 5-fold cross-validation. Dual-modality 
results combine OCT horizontal pre-/post-treatment images, the pairing that yielded the highest AUC in the single-modality analysis. Values in bold indicate the 
highest AUC and accuracy.
AUC = area under the receiver operating characteristic curve, OCT = optical coherence tomography.



all 6 imaging modalities, failed to demonstrate a substantial improvement, achieving an 
AUC of 0.564. These findings suggest that integrating multiple imaging modalities does 
not necessarily improve predictive performance, likely due to the increased number of 
learnable parameters. With the same amount of training data, the larger parameter space in 
multi-modality models may hinder effective learning and increase the risk of overfitting. In 
contrast, single-image modality models, with fewer parameters, may better capture relevant 
structural changes while maintaining generalizability. Therefore, optimizing wet AMD 
recurrence prediction may be more effective by selecting the most informative single-image 
modality rather than indiscriminately combining multiple modalities.

Research on predicting wet AMD recurrence is still limited, and both of the 2 prior studies 
relied solely on OCT imaging. The first study9 achieved an accuracy of 0.602 by using 4 OCT 
scans—one before treatment and 3 immediately after intravitreal injections. By contrast, 
our work combines multiple imaging modalities (vertical and horizontal OCT scans, plus 
fundus photographs) to forecast recurrence. We observed that fundus post-treatment images 
alone yielded an accuracy of 0.612, surpassing the 0.602 benchmark. Furthermore, our dual-
modality model—integrating fundus and OCT data—attained the highest AUC of 0.622, 
suggesting that fundus imaging could be particularly informative for prediction. The second 
study10 employed a segmentation approach to define regions of interest and reported an AUC 
of 0.725, and incorporating such segmentation techniques into our multimodal framework 
represents a promising direction for future research.

Recent advances in multimodal medical research have increasingly moved beyond image-only 
models to incorporate clinical tabular data, reflecting a broader trend toward richer and more 
personalized patient representations. For example, one study employed a hypernetwork that 
dynamically modulated the weights of a CNN processing brain magnetic resonance imaging 
(MRI) scans, conditioned on clinical, demographic, and genetic tabular inputs, thereby 
enabling individualized feature learning for each patient.18 Another study generated separate 
embeddings for tabular features and integrated them with MRI images in a contrastive learning 
framework, optimizing the model to align representations from the same patient while 
distinguishing between different individuals.19 Inspired by these approaches, future extensions 
of our wet AMD recurrence prediction model could explore the integration of clinical tabular 
data alongside imaging modalities. Such multimodal fusion may provide complementary 
insights and ultimately enhance the predictive accuracy and clinical utility of our model.

While our current model shows promising results, its predictive performance is not yet 
sufficient for clinical deployment. To address this, future work should explore advanced 
modeling techniques—such as ensemble learning,20 vision transformer architectures,21 and 
multimodal large language models22—to enhance both accuracy and robustness. In parallel, 
integrating uncertainty-aware training approaches,23 which defer classification in ambiguous 
cases and provide predictions only when confidence is high, may help reduce the risk of 
harmful false positives and negatives. These directions represent critical next steps toward 
building clinically viable systems for wet AMD recurrence prediction and ensuring greater 
safety in real-world applications.
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