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Abstract

This paper presents a fast and model-free image dehazing algorithm based on haze-density-
driven image fusion. Instead of relying on explicit physical haze models, the proposed
approach restores visibility by fusing the input image with its dehazed estimate using
spatially adaptive weights derived from a haze-density map. The dehazed estimate is
produced by blending multiple synthetically under-exposed versions of the input, where
local fusion weights promote stronger enhancement in dense-haze regions while preserving
appearance in mild-haze areas. This model-free formulation avoids the limitations inherent
to traditional scattering-based models and ensures robust performance under spatially
nonuniform haze conditions. The overall framework is lightweight and suitable for embed-
ded, real-time imaging systems due to its reliance on simple local operations. Experimental
evaluations demonstrate that the proposed method achieves competitive results compared
to state-of-the-art dehazing algorithms in both visual quality and quantitative metrics. A
hardware prototype further shows that the method can process high-resolution imagery
at real-time rates, achieving 271.74 megapixels per second, or 30.69 frames per second at
DCI 4K (4096 × 2160) resolution. These results establish haze-density-driven fusion as an
effective and efficient model-free solution for real-time image dehazing.

Keywords: autonomous dehazing; model-free dehazing; image fusion; FPGA
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1. Introduction
Outdoor image degradation under hazy conditions is largely attributed to light attenu-

ation and airlight scattering, which jointly reduce scene visibility and alter color appearance.
As haze becomes denser, contrast diminishes and colors shift to a veiled look.

A large body of prior work attempts to reverse this degradation by estimating scene
radiance through physical-model inversion, often guided by handcrafted priors [1,2],
statistical cues [3–5], or deep networks [6–8]. Although these methods can produce strong
results, their dependence on explicit physical modeling reduces robustness under complex
or spatially varying haze conditions. Moreover, they implicitly assume that haze is present;
when this assumption fails, over-enhancement, color distortion, and halo artifacts often
arise. These limitations underscore the need for dehazing strategies that autonomously
assess haze conditions and adjust their behavior without relying on model inversion.

Achieving such adaptability in real time remains difficult. High-quality restoration
methods are computationally expensive, while lighter designs may lack robustness across
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diverse scenes. A practical solution must therefore balance accuracy, adaptiveness, and effi-
ciency to support deployment in embedded or low-latency systems.

To address these challenges, we propose a fast, model-free dehazing framework driven
by haze-density-aware image fusion. Instead of estimating transmission or atmospheric
light, the method constructs a dehazed estimate by fusing the input image with multiple
under-exposed variants, whose complementary visibility characteristics enhance struc-
tural clarity. Locally adaptive fusion weights, derived from a referenceless haze-density
map, regulate the restoration strength across the scene. This formulation avoids artifacts
associated with model inversion and exhibits strong robustness to varying haze levels.
Furthermore, the algorithm’s localized and lightweight operations make it highly suitable
for hardware acceleration, enabling real-time processing at high resolutions.

The main contributions of this work are as follows:
• A model-free, haze-density-driven fusion framework that performs autonomous,

region-adaptive dehazing without relying on physical-model inversion.
• A complete hardware accelerator that implements the entire pipeline for real-time

embedded deployment.
The remainder of this paper is organized as follows. Section 2 reviews related work.

Section 3 details the proposed method and hardware design. Section 4 presents quantitative,
qualitative, and hardware evaluation results. Section 5 concludes the paper and discusses
future directions.

2. Related Work
Over the past decade, image dehazing research has progressed from physically

grounded priors to fusion-based techniques, learned models, and efficient hardware real-
izations. Existing approaches can be broadly grouped into prior-based, fusion-based, deep
learning-based, and hardware-accelerated methods.

2.1. Prior-Based Dehazing

Prior-based approaches estimate transmission and atmospheric light using physical or
statistical assumptions about natural images. The Dark Channel Prior (DCP) [1] established
a widely used baseline by exploiting low-intensity statistics in haze-free regions. The Color
Attenuation Prior (CAP) [2] later introduced a linear depth model to improve efficiency,
and Haze-Lines [9] characterized RGB distributions for more reliable radiance recovery.

Recent efforts expanded these ideas with more adaptive priors for complex envi-
ronments, including the Rank-One Prior [10], Color Ellipsoid Prior [11], and scene- or
modality-specific priors for UAV [12] and remote-sensing imagery [13]. The RIDCP frame-
work [14] further demonstrated how high-quality codebook priors can enhance real-image
dehazing. Although interpretable and broadly applicable, prior-driven methods often de-
pend on explicit physical modeling, which can limit robustness under spatially nonuniform
haze or challenging illumination conditions.

2.2. Model-Free Dehazing

Model-free, fusion-based approaches construct multiple image variants and combine
them using spatially adaptive weights, avoiding explicit estimation of transmission or atmo-
spheric light. Artificial Multiple-Exposure Image Fusion [15] demonstrated that exposure
manipulation and weighted blending can restore visibility across diverse scenes. Extensions
such as [16] incorporated local airlight compensation, further improving performance in
both daytime and nighttime conditions.

As these methods rely on localized contrast cues rather than explicit physical models,
they exhibit strong robustness across different haze conditions. Their emphasis on simple
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operations and spatial locality makes them especially well-suited for real-time deployment.
This combination of adaptability and efficiency motivates the haze-density-aware fusion
strategy developed in this work. Notably, model-free fusion techniques have also inspired
hardware-friendly implementations [17], underscoring their practical relevance.

2.3. Learning-Based Dehazing

Deep learning techniques learn the mapping from hazy to clear images directly
from data. Early examples such as DehazeNet [18] focused on transmission estima-
tion, while later CNN-based models incorporated multiscale features and structural con-
straints [19]. Transformer-based approaches, including ViT-based dehazing [8] and MB-
TaylorFormer [20], expanded learning capacity for long-range dependencies.

Recent developments combine learning with physical cues or generative modeling,
including Feature Physics Models [21], conditional variational approaches [22], diffusion-
based techniques [3,6], and detail-enhanced attention mechanisms [7]. Despite state-of-the-
art restoration quality, these models often require substantial computation and memory,
which limits their deployment in real-time or embedded systems. As a result, lightweight
model-free strategies—especially fusion-based pipelines—are increasingly viewed as com-
plementary or preferable alternatives for hardware-oriented settings.

2.4. Hardware-Oriented Dehazing

Hardware research has primarily focused on accelerating existing dehazing algorithms
to meet real-time constraints. Early FPGA demonstrations of DCP-based techniques [23,24]
confirmed that substantial speedups are achievable through parallelism. Later refinements
reduced resource usage, improved temporal stability, and integrated dehazing into larger
embedded vision pipelines [25,26].

More recent efforts target high-resolution video, demonstrating real-time throughput
for prior-based methods [27,28] or hybrid dehazing models [29]. Fusion-based acceler-
ators [17] further highlight that localized, model-free fusion strategies align naturally
with hardware parallelism. These findings reinforce the suitability of lightweight fusion
techniques—particularly haze-density-driven formulations—for real-time embedded de-
hazing systems. Table 1 summarizes representative FPGA realizations and their trade-offs
in precision, resource usage, and frame rate.

Table 1. Overview of real-time image dehazing implementations. NA and fps stand for not available
and frames per second, respectively.

Year Paper Device Technique Design Tool Key Features and Outcomes

2018 [26] FPGA (NA) Filtering NA
- Direct FPGA realization of DCP
- Proposing a fast airlight estimation method
- Achieving a throughput of 88.7 Mpixels/s

2019 [25] ASIC (TSMC’s 0.13 µm) Filtering Verilog HDL
- Adding temporal smoothing between successive frames to eliminate flickering
- Implementing a 7-stage pipelined ASIC accelerator
- Achieving a throughput of 200 Mpixels/s

2021 [30] FPGA (Xilinx
XC7Z020-3CLG484) CNN Verilog HDL

- Integrating a lightweight CNN for transmission map estimation from the input
image and its dark channel
- Achieving a throughput of 200 Mpixels/s

2023 [29] FPGA (Xilinx
XC7Z020-CLG484-1) Filtering Verilog HDL

- Estimating the pixel-wise transmission map directly from saturation
- Estimating the atmospheric light using the downsampled input image
- Implementing a 7-stage pipelined FPGA accelerator
- Achieving a throughput of 85.2 Mpixels/s

2024 [17] FPGA (Xilinx
XC7K325T-2FFG900C) Image fusion NA

- Combining high-boost filtering with linear intensity stretching for haze removal
- Achieving a throughput of 72.299 Mpixels/s
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Table 1. Cont.

Year Paper Device Technique Design Tool Key Features and Outcomes

2025 [27] FPGA (Xilinx
XC7Z020CLG400) Filtering NA

- Direct implementation of DCP
- Refining the transmission map using a guided filter
- Post-processing the dehazed image using gamma correction
- Processing HD videos at 60 fps

2025 [28] FPGA (Xilinx
XC7S25CSGA225-2) Filtering NA

- Improving DCP with custom sky segmentation
- Leveraging global saturation to detect haze
- Leveraging contrast to estimate haze density
- Processing Full HD videos at 60 fps

3. Proposed Method
This section presents the proposed haze-density-driven fusion framework and its

corresponding hardware accelerator for real-time deployment. We first describe the model-
free dehazing algorithm, followed by the hardware architecture that executes this pipeline
efficiently at high resolutions.

As illustrated in Figure 1, the method comprises seven modules. The fusion-based
dehazing module generates an initial dehazed estimate of the input image. The haziness-
degree evaluator computes pixel-wise haze density and derives both patch-based and
average haze values. The interpolation module low-pass filters and upsamples the patch-
based densities to produce a smooth spatial haze field. This field is then used by the
local-blending-weight module to compute fusion weights. The image-blending module
fuses the input with its dehazed estimate using these weights. In parallel, the average
haze density feeds the self-calibrating-weight module, which controls the adaptive tone-
remapping module. This final module enhances the fused image while preventing artifacts
such as undershoot, over-enhancement, and color distortion.

To support real-time operation, the modules are scheduled across video timing in-
tervals: the active-period modules (pale green in Figure 1) process streaming pixels con-
tinuously, while the interpolation module (pale blue) operates during blanking periods,
leveraging temporal reuse to maintain throughput. This organization matches the model-
free design of the proposed framework and facilitates efficient hardware realization.

Fusion-based 

image dehazing

Adaptive tone 

remapping

Haziness degree 

evaluator

Self-calibrating weight

Local blending weights

Interpolation

Image 

blending
Input

frame

Output

frame

Patch-based

haze density

values

Average haze density value

Video blanking 

interval

Video active 

interval

Figure 1. Overview of the proposed haze-density-driven fusion dehazing framework. Green modules
operate during the video active interval, whereas the interpolation module (blue) runs during the
blanking interval to avoid throughput bottlenecks.

3.1. Fusion-Based Image Dehazing

The first stage produces a dehazed estimate using a multi-variant fusion strategy.
As shown in Figure 2, which illustrates a hazy image from the IVC dataset [31], applying
different under-exposure levels to a hazy image (for example, gamma values of 1.5 and 2.5)
reveals scene structures otherwise obscured by veiling light; objects become increasingly
discernible in these darker variants (highlighted in pink, blue, and red rectangles). This
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observation motivates the generation of multiple under-exposed versions of the input and
their fusion to enhance scene visibility.

Input image Gamma correction (𝛾 = 1.5) Gamma correction (𝛾 = 2.5)

Figure 2. Hazy image and two of its gamma-adjusted variants. Colored rectangles highlight repre-
sentative regions whose scene details become clearer.

As haze suppresses fine details, a detail-enhancement step is applied prior to gamma
correction and fusion (Figure 3). The resulting variants are then combined using dark-
channel-based weights, whose strong correlation with haze density makes them both
simple and effective. This model-free formulation yields a dehazed estimate that enhances
structural details, reduces veiling, and maintains natural color appearance.

Detail

enhancement

FusionGamma 

correction
Input

frame

Dehazed

frame

Weight 

calculation
𝐼 𝐼𝑒

𝐼1 = 𝐼𝑒

𝐼2

𝐼3
𝐼4

𝐼4𝐼3𝐼2𝐼1

𝑊1

𝑊2

𝑊3

𝑊4 𝐽

Figure 3. Fusion-based dehazing module. Multiple gamma-adjusted variants are fused using dark-
channel-derived weights.

3.1.1. Detail Enhancement

Given an input image (I), the luminance component is first extracted via its conversion
from the RGB color space to the YCbCr domain. Detail enhancement is then performed on
the luminance channel (Y), where high-frequency information representing local texture
and edge content is obtained via convolution with a Laplacian kernel (∇2). The resulting
detail layer (e) is combined with the original luminance through an enhancement weight
(ω) that controls the degree of sharpening. This weight is formulated as a piecewise linear
function of local variance (v), allowing spatially adaptive amplification of fine details
in textured regions while preventing noise over-enhancement in smooth or flat areas.
The enhanced luminance (Ye) is subsequently merged with its Cb and Cr components to
reconstruct a refined RGB image (Ie).

This step is mathematically expressed as follows:

Ye = Y + ωe, (1)

e = Y ⊛∇2, (2)

ω =


ω1 v < v1(

ω2 − ω1

v2 − v1

)
v +

ω1v2 − ω2v1

v2 − v1
v1 ≤ vs. ≤ v2

ω2 v > v2

, (3)

v = Y2 ⊛U − (Y ⊛U)2, (4)

where U denotes the averaging kernel, ⊛ represents the convolution operation, and user-
defined parameters {v1, v2, ω1, ω2} are empirically determined as {0.001, 0.01, 2.5, 1}.
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3.1.2. Gamma Correction

Gamma correction is applied to the detail-enhanced image (Ie) to simulate multiple
under-exposure levels. In principle, increasing the number of gamma-adjusted variants
can further improve dehazing quality by providing richer visibility cues. However, each
additional variant requires an extra look-up table (LUT), dark-channel computation, and fu-
sion branch, causing hardware resource usage to grow exponentially. Considering that
dehazing serves as a pre-processing stage in a larger vision system, a balance between
algorithmic performance and hardware efficiency is essential.

To this end, three gamma values of 1.9, 1.95, and 2 were empirically selected to yield
perceptually distinct under-exposed variants that effectively attenuate haze while keeping
resource usage manageable. Together with the uncorrected image, these variants form the
set {I1 = Ie, I2 = (Ie)1.9, I3 = (Ie)1.95, I4 = (Ie)2} used in the subsequent fusion stage.

3.1.3. Weight Calculation and Image Fusion

For each variant and the original image, the complement of the dark channel with
respect to one is computed and then L1-normalized, serving as fusion weights that quantify
the relative haze concentration at each pixel location. Pixels with lower dark channel
intensity—indicative of thinner haze—receive greater weights, indicating that clearer
regions contribute more dominantly to the fusion output.

The image fusion step sums over these weighted inputs to generate the final dehazed
image (J), combining the enhanced local contrast of the under-exposed variants with the
original color fidelity. This process avoids explicit transmission estimation, enabling a
lightweight and fully model-free solution well-suited for parallel processing.

Wi = 1 − min
3×3

(
min

c∈{R,G,B}
Ic
i

)
, (5)

Wi =
Wi

∑4
i=1 Wi

, (6)

J =
4

∑
i=1

Wi Ii. (7)

3.2. Haze Density Estimation and Interpolation

This section describes the haze-density estimation and interpolation process, corre-
sponding to the haziness-degree-evaluator and interpolation modules in Figure 1. The goal
is to derive a spatially coherent haze-density field that subsequently guides the image blend-
ing and tone-remapping stages. Section 3.2.1 introduces the referenceless haze-density
estimator, and Section 3.2.2 details the smoothing and interpolation procedure used to
generate the final haze-density map.

3.2.1. Referenceless Haze-Density Estimation

To achieve autonomous and spatially adaptive dehazing, the system estimates haze
density directly from the input image without relying on physical haze parameters or
reference data. The resulting density map governs both local blending and global tone
remapping. A referenceless evaluator [32] computes the haze-density map ρI as

ρI = 1 − t̂, (8)

where t̂ is obtained by minimizing a cost function O(t), which is formulated as

O(t) =
S(t)V(t)σ(t)

D(t)
+

λ

t
, (9)
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where S(t), V(t), and σ(t) represent the saturation, brightness, and sharpness of the image
as functions of the transmission map t, while D(t) denotes the dark channel. The parameter
λ provides regularization to prevent overestimation of t. Minimizing O(t) identifies t̂ such
that the recovered scene exhibits maximum colorfulness, brightness, and detail clarity,
while the dark channel is simultaneously suppressed.

To maintain conciseness, detailed derivations are omitted here; interested readers are
referred to [32] (Section 3.4 and Appendix A) for the complete mathematical formulation.
The final expression for computing the haze-density map is given by

ρI = ImΨ +
Imcv

λ
−

√
Imcv

λ

(
Imcv

λ
− 255 + ImΨ

)
, (10)

where ImΨ = min(x,y)∈Ψ

[
minc∈{R,G,B} Ic(x, y)

]
is the minimum intensity within a local

patch Ψ, and Imc = maxc∈{R,G,B} Ic − minc∈{R,G,B} Ic is the color difference between the
maximum and minimum channel intensities. The term v denotes the local luminance
variance, defined earlier in Equation (4).

3.2.2. Haze Density Map Interpolation

The estimated haze-density map often exhibits spatial discontinuities caused by abrupt
variations in haze levels between neighboring regions. To accommodate spatial hetero-
geneity while ensuring smooth visual transitions, the input frame is first divided into
non-overlapping 8 × 8 patches. The local haze density ρΩi for the i-th patch Ωi is then
computed as

ρΩi = max

ρ̄I ,
1

|Ωi| ∑
(x,y)∈Ωi

ρI(x, y)

, (11)

where |Ωi| denotes the number of pixels in Ωi and ρ̄I is the average haze density of the
input frame.

Figure 4 illustrates that using raw 8 × 8 local weights can lead to blocky artifacts in the
blended output, especially at patch boundaries where haze densities vary sharply. The left
image in Figure 4 visualizes the patch-based haze densities, where the highlighted region
shows abrupt transitions from 0.1531 to zero. When these coarse values are directly applied
for blending (right image), visible discontinuities appear as the pink-outlined blocks.

Input image superimposed by local haze density values

0.9306 0.9388 0.7204 0.5878 0.7816 0.0061 0.1265 1.0000

0.4143 0.2347 0.0000 0.0000 0.3429 0.3265 0.1367 0.3694

0.2041 0.0714 0.0000 0.0000 0.0000 0.0000 0.0510 0.2061

0.1204 0.0857 0.1531 0.0000 0.0000 0.0000 0.0000 0.2816

0.0633 0.0000 0.1122 0.0000 0.0000 0.0000 0.1531 0.2816

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1082 0.1735

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0224

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Blending result using local weights (8×8 patches)

Figure 4. Patch-level haze densities and resulting block artifacts when used directly for blending.

To mitigate these artifacts, a 2 × 2 low-pass filter is first applied to attenuate abrupt
transitions, followed by 4× bilinear interpolation to upscale the local haze densities from
8 × 8 patches to an effective resolution of 29 × 29. This interpolation process preserves
regional haze characteristics while generating a spatially continuous density field suitable
for image blending.
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As shown in Figure 5, the proposed interpolation strategy significantly reduces blocky
artifacts by producing more gradual transitions across adjacent patches. In the same
region highlighted in Figure 4, the coarse 2 × 2 haze densities are smoothed into finer
5 × 5 variations, yielding a perceptually natural blending behavior in both horizontal and
vertical directions. Figures 4 and 5 are adopted from our previous work in [33].

0.0830 0.0415

0.0939 0.0721

0.1531 0.0000

0.1122 0.0000

Local haze density

Eq. (16)

2×2

low-pass filter

4× bilinear 

interpolation

0.0830 0.0726 0.0622 0.0519 0.0415

0.0857 0.0766 0.0674 0.0583 0.0491

0.0884 0.0805 0.0726 0.0647 0.0568

0.0912 0.0845 0.0778 0.0711 0.0644

0.0939 0.0884 0.0830 0.0775 0.0721

Blending

result

Input

image

𝜌𝐼

Interpolation module in Figure 1

Figure 5. Effect of interpolation. The refined haze-density map yields smoother fusion weights and
eliminates blocky artifacts.

3.3. Haze-Aware Image Blending

This section describes the haze-aware image blending process, which corresponds
to the local-blending-weight and image-blending modules in Figure 1. Using the inter-
polated haze-density map, the system computes blending weights and applies them to
fuse the input image with its dehazed estimate. Section 3.3.1 details the local blending
weight calculation, and Section 3.3.2 presents the image-blending procedure used to attain
autonomous dehazing.

3.3.1. Local Blending Weight Calculation

The local blending weight αi is derived from the interpolated haze-density map ρINT

obtained in Section 3.2.2. Based on perceptual analysis, pixels with higher haze density
should rely more heavily on the dehazed result, while clearer regions should retain more of
the original content. To reflect this principle, αi is formulated as follows:

αi =


0 ρINT < ρ1

ρ̄I − ρ1

ρ2 − ρ1
ρ1 ≤ ρINT ≤ ρ2

1 ρINT > ρ2

, (12)

where ρ1 = 0.8811 and ρ2 = 0.9344 represent lower and upper haze-density thresholds for
classifying haze levels, and ρ̄I denotes the average global haze density computed from the
entire frame. These threshold values are adopted from our previous work on hazy versus
haze-free image classification [32].

This design yields a smooth transition of blending ratios across different haze con-
ditions. Specifically, when ρINT > ρ2, the patch is heavily hazy, and the dehazed result
fully dominates (αi = 1). Intermediate haze levels are handled through linear interpolation
to ensure continuity between neighboring patches. The adaptive weighting mechanism
enables the system to autonomously balance enhancement strength according to haze
densities, without manual control or external inputs.
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3.3.2. Image Blending for Autonomous Dehazing

The input image I and its dehazed estimate J are fused using local blending weights α

derived in the previous section. This process produces the blended result B according to

B = αJ + (1 − α)I. (13)

The rationale for this blending formulation is threefold.
• Haze-free regions: When the input region is haze-free, applying dehazing un-

necessarily can amplify noise or introduce color distortion. In such cases, α = 0
ensures that the output remains identical to the original image, thereby preserving
natural appearance.

• Mild to moderate haze: For regions with partial haze, excessive dehazing may lead
to over-enhancement or halo artifacts. To mitigate this problem, α varies smoothly
between 0 and 1, proportionally to the local haze density, allowing gradual adjustment
of dehazing strength.

• Densely hazy regions: When the haze density is high, full dehazing is necessary
to restore structural visibility and contrast. Here, α = 1 fully prioritizes the dehazed
image and suppresses the original content.
This autonomous blending strategy allows continuous adaptation across the entire

image without manual intervention or scene-specific tuning.

3.4. Adaptive Tone Remapping

This section presents the adaptive tone remapping (ATR) process, corresponding to the
adaptive-tone-remapping and self-calibrating-weight modules in Figure 1. Using the fused
image B and the estimated global haze density ρ̄I , the system adjusts luminance and chromi-
nance while regulating the enhancement strength to prevent over-correction. Section 3.4.1
details the luminance and chrominance adjustment procedure, and Section 3.4.2 introduces
the self-calibrating weight that controls the enhancement strength.

3.4.1. Luminance and Chrominance Adjustment

ATR operates in two sequential phases: (i) luminance enhancement, which com-
pensates for brightness loss caused by haze removal, and (ii) chrominance expansion,
which restores the natural color gamut narrowed by luminance correction. The enhance-
ment strength is automatically adjusted using the self-calibrating weight (Γ, introduced in
Section 3.4.2), which scales the tone enhancement proportionally to the detected haze level.
Therefore, haze-free regions remain unaltered, while regions with heavier haze undergo
progressively stronger enhancement.

Denoting the luminance and chrominance components of the image before and after
ATR as {YB, ChB} and {YB f , ChB f }, respectively, ATR can be described as

YB f = YB + Γ · g1(YB) · g2(YB), (14)

ChB f = ChB

[
1 +

YB f

YB
· g3(YB)

]
, (15)

where g1(·), g2(·), and g3(·) denote the nonlinear luminance gain, linear weighting,
and chrominance expansion functions, respectively.

The luminance enhancement module combines a nonlinear gain and a linear weight to
emphasize structure while preventing over-amplification in bright regions. The nonlinear
gain g1(·) constrains enhanced luminance using the Adaptive Luminance Point (ALP),
which is expressed as
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g1(YB) =
YB

221

[
255
(

1 − YB − ALP
255

)θ(255 − YB
255

)]2

, (16)

ALP =


0.04 +

0.02
255

(L0.9 − L0.1) ȲB > 128

0.04 − 0.02
255

(L0.9 − L0.1) ȲB ≤ 128
, (17)

where the user-defined exponent θ tunes enhancement aggressiveness, ȲB represents the
average luminance, and Lk denotes the luminance value where the cumulative distribution
function CDF(Lk) = k. The linear weighting function g2(·) modulates enhancement
depending on input brightness as

g2(YB) =
m

255
YB + b, (18)

with slope m and intercept b empirically determined for perceptual balance between dark
and bright tones.

While luminance stretching improves brightness, it can inadvertently reduce colorful-
ness due to the Helmholtz–Kohlrausch effect. To counter this effect, chrominance signals
are expanded according to local luminance. The ratio YB f /YB in Equation (15) provides
self-calibration, while g3(·) follows a piecewise linear mapping:

g3(YB) =



0.7 YB < Llow

0.7 − 0.26

(
YB − Llow

Lhigh − Llow

)
Llow ≤ YB ≤ Lhigh

0.44 YB > Lhigh

, (19)

where Llow and Lhigh are predefined luminance thresholds. This mapping enhances satura-
tion in dark areas and suppresses excessive color shifts in bright regions, maintaining a
visually natural tone distribution.

3.4.2. Self-Calibrating Weight

ATR relies on a self-calibrating weight Γ that modulates enhancement strength accord-
ing to the overall haze level present in the input image. This weight is formulated as a
piecewise function of ρ̄I :

Γ =



0 ρ̄I ≤ ρ1(
ρ̄I − ρ1

ρ2 − ρ1

)n
ρ1 < ρ̄I ≤ ρ2(

Γu − 1
1 − ρ2

)
(ρ̄I − ρ2) + 1 ρ̄I > ρ2

, (20)

where ρ1 and ρ2 are user-defined haze-density thresholds, n controls the exponential
response, and Γu denotes the maximum enhancement factor. As mentioned in Section 3.3.1,
ρ1 = 0.8811 and ρ2 = 0.9344 are adopted from our previous work [32].

When the average haze density ρ̄I is lower than ρ1, the image is considered haze-free,
and Γ = 0 disables luminance enhancement, preserving the original appearance. For mild
haze levels (ρ1 < ρ̄I ≤ ρ2), Γ increases smoothly following an exponential profile governed
by exponent n (empirically set to 0.1), thereby enabling gradual strengthening of luminance
enhancement. When haze density exceeds ρ2, Γ transitions to a linear region that caps the
enhancement magnitude at Γu = 1.2 to prevent excessive luminance boosts.
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3.5. Hardware Accelerator

This section presents the hardware accelerator that implements the proposed dehazing
pipeline. All modules are designed using a fully pipelined methodology to sustain high-
throughput, pixel-stream processing. Resource usage is minimized through fixed-point
arithmetic, where the word length of each signal is carefully selected to ensure that the
final output error remains within ±1 least significant bit (LSB). Figure 6 illustrates the
overall hardware design flow, from the algorithm specification to hardware description
and verification on the target FPGA.

Algorithm 

description

(MATLAB)

Architecture 

design

Fixed-point 

design

Datapath

Hardware 

description

(Verilog)

Synthesis and 

verification

Error

verification
Functional and timing

simulation
Within ±1 LSB

Otherwise, 

revise

Otherwise, 

revise All constraints 

are met

Figure 6. Overview of the hardware design procedure. Dashed arrows indicate that information is
forwarded only when the associated condition is satisfied.

Special consideration is given to the interpolation module: As the haze-density map
of the current frame becomes available only after two frames, the module is scheduled
to operate during the video blanking interval, effectively reducing the latency to a single
frame. The high temporal similarity between consecutive frames allows this design choice
without affecting output quality.

Due to the complexity of the full system, only simplified datapaths are shown for
each module. These diagrams illustrate the intra-module dataflow consistent with RTL
(Register Transfer Level)-oriented hardware description and provide a clear view of how
each component is realized in hardware. Section 3.5.1 through Section 3.5.4 detail the
implementation of all major modules in the accelerator.

3.5.1. Fusion-Based Image Dehazing Module

Figure 7 presents the simplified architecture of the fusion-based dehazing module,
consisting of two submodules: (a) detail enhancement and (b) gamma correction, weight
calculation, and fusion.

The detail-enhancement submodule (Figure 7a) converts the input RGB stream to the
YCbCr domain and enhances only the luminance channel. The enhanced Y component is
then recombined with the original Cb and Cr channels to produce the locally enhanced
color image. This stage requires two-dimensional filtering, with implementation details
provided in Appendix A.

The gamma-correction and fusion submodule (Figure 7b) generates three under-
exposed variants of the enhanced image using LUTs corresponding to γ ∈ {1.9, 1.95, 2.0}.
A minimum filter computes the dark-channel response, which is processed through an
adder-tree structure to obtain normalized fusion weights Wi. Each variant is then multiplied
by its corresponding weight, and the weighted results are accumulated through adder trees
to produce the final dehazed RGB output J = {JR, JG, JB}.

An important optimization is applied to reduce hardware cost during weight calcula-
tion. As gamma correction is a monotonically increasing operation, it preserves the relative
ordering of pixel intensities. As illustrated in Figure 8, the straightforward design—which
applies gamma correction first and computes dark-channel responses afterward—requires
four minimum filters. By instead applying gamma correction directly to the dark channel
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of the input, only one minimum filter is needed. As spatial minimum filters are resource-
intensive, this design choice yields a substantial reduction in memory and logic utilization
while maintaining the correctness of the weight computation.
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Figure 7. Simplified datapath of the fusion-based dehazing module. As the complete datapath cannot
be fully illustrated in a single diagram, it is divided into two parts: (a) detail enhancement and
(b) gamma correction, weight calculation, and fusion.
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Figure 8. Reduction of minimum-filter resources in weight computation.

3.5.2. Haziness-Degree-Evaluator and Interpolation Modules

The haziness-degree-evaluator and interpolation modules are implemented as a uni-
fied, streamlined datapath. As shown in Figure 9, the architecture realizes the operations
described in Sections 3.2.1 and 3.2.2.

The first stage computes the local minimum and maximum RGB values to measure
color range. These values, together with the local variance v and the inverse regulariza-
tion factor 1

λ , are used to evaluate the referenceless haze-density model in Equation (11).
A square-root unit then produces the pixel-wise haze density ρI , which is accumulated and
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averaged over the frame to obtain the global haze indicator ρ̄I . This global value acts as a
scene-level prior for subsequent tone-remapping and blending stages.

To ensure spatial smoothness and avoid block artifacts, the pixel-wise haze map is
processed by a 2 × 2 low-pass filter followed by a 4× bilinear interpolator. Both operations
are scheduled during the video blanking interval, enabling efficient temporal reuse without
reducing throughput in the active video region. The resulting interpolated haze-density
map ρINT provides the continuous spatial guidance required for haze-aware blending in
the fusion stage.
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𝐼𝐵
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3
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3 +

min5×5

−
+

× ×

+ ×
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𝑣

ൗ1 𝜆

+ +
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+

255
−

These two modules execute during 

the video blanking interval.

Figure 9. Simplified datapath of the haziness-degree-evaluator and interpolation modules. LPF is the
abbreviation of low-pass filter, ρ̄I denotes the average haze-density value, and ρINT represents the
interpolated haze-density map.

3.5.3. Local-Blending-Weight and Image-Blending Modules

The local-weight calculation and image-blending operations are implemented using a
fully pipelined datapath, as shown in Figure 10. In the first stage, the local blending weight
αi is computed according to Equation (12). The interpolated haze-density value ρINT is
compared with thresholds ρ1 and ρ2 using a comparator block, and the control logic selects
the appropriate branch of the piecewise linear function.

The second stage performs the blending operation defined in Equation (13), where
I = {IR, IG, IB} and J = {JR, JG, JB} denote the original and dehazed RGB channels. Each
channel is processed independently through parallel multipliers applying αi and 1 − αi,
followed by adders that combine the weighted results to produce the final blended output
B = {BR, BG, BB}.
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Figure 10. Simplified datapath of local-blending-weight and image-blending modules.

3.5.4. Adaptive-Tone-Remapping and Self-Calibrating-Weight Modules

The hardware implementation of the self-calibrating-weight and ATR modules
is shown in Figure 11, where both components are integrated into a unified, fully
pipelined datapath.

The pipeline begins by converting the blended RGB input {BR, BG, BB} into the YCbCr
domain using a 4:2:2 format. The resulting luminance (YB) and chrominance (ChB) signals
are then processed in two parallel branches:
• Self-Calibrating Weight Generation: The global average luminance ȲB is ob-

tained through an averaging block, while a CDF-based estimator computes the per-
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centile luminance levels L0.1 and L0.9 for ALP (Equation (17)). The average haze
density ρ̄I is processed through Equation (19) to generate the self-calibrating weight Γ,
which adaptively modulates the overall tone-remapping strength according to scene
haze conditions.

• Adaptive Tone Remapping Pipeline: The luminance channel YB passes through
the nonlinear and linear gain units g1(·) and g2(·) (Equations (16) and (18)). Their
outputs are scaled by Γ and combined to produce the enhanced luminance YB f .
In parallel, the chrominance components are adjusted using the chrominance-
scaling function g3(·) and the luminance ratio YB f /YB (Equation (15)), implementing
chrominance expansion.
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Figure 11. Simplified datapath of the self-calibrating-weight and adaptive-tone-remapping modules.
The cumulative distribution function is abbreviated as CDF.

Finally, the enhanced YCbCr signals {YB f , ChB f } are converted back to RGB to yield
the adaptively tone-mapped output {BR

f , BG
f , BB

f }.

4. Evaluation
This section presents a comprehensive evaluation of the proposed dehazing frame-

work and hardware accelerator. Section 4.1 reports the quantitative results on standard
benchmarks. Sections 4.2 and 4.3 provide qualitative comparisons on natural and aerial
images, demonstrating the method’s visual effectiveness across diverse haze conditions.
Section 4.4 summarizes the hardware implementation results, highlighting throughput,
resource usage, and real-time performance.

4.1. Quantitative Evaluation

To objectively assess the performance of the proposed system, quantitative evaluations
were performed on five widely used public datasets: FRIDA2 [34], D-HAZY [35], O-
HAZE [36], I-HAZE [37], and Dense-Haze [38]. Table 2 summarizes the characteristics of
these datasets, including the numbers of haze-free and hazy image pairs and whether the
image scenes are synthetic or real. The evaluation compares the proposed method with
five representative algorithms: DCP [1], CAP [2], DehazeNet [18], YOLY [39], and MB-
TaylorFormer [20]. For a fair comparison, FCDM [6] was excluded owing to its behavior of
resizing input images into square dimensions, whereas other methods process variable-
sized images.
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Table 2. Summary of the five public datasets used in the quantitative evaluation. The # symbol
denotes quantities.

Dataset Haze-Free (#) Hazy (#) Remark

FRIDA2 66 264 Synthetic road scene images
D-HAZY 1472 1472 Synthetic indoor images
O-HAZE 45 45 Real outdoor images
I-HAZE 30 30 Real indoor images

Dense Haze 50 50 Real indoor and outdoor images

Two complementary image quality measures were adopted:
• The TMQI (Tone-Mapped image Quality Index) quantifies the structural fidelity

and naturalness of tone-mapped or dehazed images with respect to their reference
haze-free ground truths. A higher TMQI value indicates better perceptual restoration
and tone consistency.

• The FSIMc (Feature Similarity Index for Color Images) evaluates the structural
and chrominance correspondence between restored images and their references. This
metric is particularly sensitive to preservation of edge details and color relationships,
making it suitable for assessing dehazed image quality.
Table 3 reports the average TMQI and FSIMc values computed over all datasets.

The best and second-best results for each dataset are marked in bold and italic, respectively.

Table 3. Average TMQI and FSIMc values computed on five public datasets. The best and second-best
results are boldfaced and italicized, respectively. MB-TF is the abbreviation for MB-TaylorFormer.

Dataset

Method
DCP CAP DehazeNet YOLY MB-TF Proposed

TMQI ↑

FRIDA2 0.7291 0.7385 0.7366 0.7176 0.7631 0.7348
D-HAZY 0.8631 0.8206 0.7966 0.6817 0.7428 0.7825
O-HAZE 0.8403 0.8118 0.8413 0.6566 0.8732 0.9102
I-HAZE 0.7319 0.7512 0.7598 0.6936 0.8655 0.8344

Dense-Haze 0.6383 0.5955 0.5723 0.5107 0.7237 0.6297

Total 0.7357 0.7336 0.7312 0.6520 0.7761 0.7496

FSIMc ↑

FRIDA2 0.7746 0.7918 0.7963 0.7849 0.7158 0.8012
D-HAZY 0.9002 0.8880 0.8874 0.7383 0.7727 0.8699
O-HAZE 0.8423 0.7738 0.7865 0.6997 0.8420 0.8516
I-HAZE 0.8208 0.8252 0.8482 0.7564 0.8692 0.8741

Dense-Haze 0.6419 0.5773 0.5573 0.5763 0.7976 0.5938

Total 0.7746 0.7693 0.7725 0.7111 0.7544 0.7883

For the TMQI, the proposed method achieves competitive or superior performance
across most datasets, with a particularly strong improvement on O-HAZE (0.9102), sur-
passing both prior-based and deep-learning methods. The method also maintains stable
performance on challenging D-HAZY and I-HAZE datasets, where the integration of refer-
enceless haze estimation and adaptive tone remapping contributes to preserving structural
integrity and visual naturalness. Averaged across all datasets, the proposed system at-
tains an overall TMQI of 0.7496, which is ranked second after the deep transformer-based
MB-TaylorFormer (0.7761).

For the FSIMc, the proposed system demonstrates consistent color and structural
fidelity, yielding an average FSIMc of 0.7883, the highest among all compared methods.
Notably, on FRIDA2, O-HAZE, and I-HAZE, the proposed method exhibits top-ranked
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scores, reaffirming its strength in maintaining global contrast and fine-grained color texture.
The improved FSIMc over the DCP and CAP confirms that the proposed haze-aware
blending and chrominance expansion effectively enhance perceptual color quality without
introducing artifacts.

Overall, the quantitative analysis indicates that the proposed system achieves a fa-
vorable trade-off between visual fidelity (high TMQI) and structural/color preservation
(high FSIMc) while maintaining real-time processing capability (discussed in Section 4.4).
The relatively consistent performance across synthetic and real datasets demonstrates that
the system generalizes well to diverse imaging conditions.

4.2. Qualitative Evaluation on Natural Images

The visual performance of the proposed dehazing framework was compared against
six representative algorithms: the DCP, CAP, DehazeNet, YOLY, MB-TaylorFormer,
and FCDM. Figure 12 shows the restoration results across diverse haze conditions, in-
cluding mild, moderate, and dense haze, haze-free scenes, and challenging failure cases.

The proposed system adapts its enhancement strength using the self-calibrating weight
Γ, derived from the average haze density ρ̄I . In this evaluation, thresholds were set to
ρ1 = 0.8811 and ρ2 = 0.9344.

In mildly and moderately hazy scenes, the method improves visibility and color
contrast while avoiding over-enhancement, halo artifacts, and aggressive tone shifts. Prior-
based methods such as the DCP and CAP tend to introduce darkened shadows or over-
estimated contrast, while deep models may over-brighten distant regions or alter global
color balance.

Under dense haze conditions, the proposed approach recovers structural detail and
maintains consistent color appearance. The combination of haze-aware blending and adap-
tive tone remapping enables effective suppression of veiling without color drifting or loss
of contrast. Competing approaches often struggle with clipped highlights, oversuppression,
and inconsistent chromaticity.

For haze-free inputs, the proposed system correctly disables dehazing operations
(Γ = α = 0), preserving the original brightness and color fidelity. This behavior is in
contrast to other approaches, which frequently alter clear scenes due to fixed assumptions
about haze presence.

In failure cases involving extreme lighting or reflective surfaces, the method pro-
duces stable, visually coherent results without introducing strong artifacts or color dis-
tortions. This robustness reflects the advantages of the haze-density-driven, model-free
fusion design.

Overall, the qualitative results show that the proposed system achieves a strong
balance of haze removal, color naturalness, and stable tone reproduction across a wide
range of natural images.

4.3. Qualitative Evaluation on Aerial Images

To further assess generalization across large-scale environments, the method was
evaluated using aerial images exhibiting spatially extensive haze. Figure 13 compares
the proposed framework with the same set of benchmarks under haze-free, mildly hazy,
moderately hazy, and densely hazy conditions, using ρ̄I and thresholds ρ1 = 0.8811 and
ρ2 = 0.9344 for classification.

In haze-free scenes, traditional prior-based and learning-based algorithms frequently
modify colors or brightness unnecessarily. The proposed framework preserves the original
image by suppressing dehazing when haze density is negligible.
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For mild haze, the method restores clarity while maintaining natural tone reproduction.
Edge structures such as runway markings and aircraft contours remain consistent without
haloing or color oversaturation. Deep learning methods improve detail but occasionally
introduce exaggerated saturation.

Input

image

FCDM

MB-Taylor

Former

YOLY

DehazeNet

CAP

DCP

Mildly hazy

ҧ𝜌𝐼 = 0.8974

Moderately hazy

ҧ𝜌𝐼 = 0.9259

Densely hazy

ҧ𝜌𝐼 = 0.9514

Haze-free

ҧ𝜌𝐼 = 0.6227

Failure

ҧ𝜌𝐼 = 0.8862

Proposed

Figure 12. Qualitative comparisons on natural images with varying haze densities. The average haze
density ρ̄I was compared against two thresholds, ρ1 = 0.8811 and ρ2 = 0.9344, to determine the
haze condition.

Under moderate haze conditions, the proposed system provides a balanced enhance-
ment of structure and color. Prior-based methods often produce darkened outputs, while
some learned models fade global color or produce unnatural tints.

In dense haze, the DCP and FCDM deliver strong dehazing performance but noticeably
alter color appearance. In contrast, the proposed framework removes haze while preserving
overall brightness and color fidelity.
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These results demonstrate that the proposed approach generalizes well to aerial
environments, benefiting from both the referenceless haze estimator and the adaptive
blending mechanism.

Input
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Figure 13. Qualitative comparisons on aerial images across haze levels determined by ρ̄I , ρ1 = 0.8811,
and ρ2 = 0.9344.
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4.4. Hardware Implementation Results

The proposed autonomous dehazing system was implemented using Verilog HDL
following the IEEE Std 1364-2005 specification [40]. The hardware resource utilization
on a Xilinx XC7Z-045FFG900-2 MPSoC, designed by AMD (Santa Clara, CA, USA) and
manufactured by TSMC (Taichung, Taiwan), device was obtained using Vivado v2023.1.
The design occupies 12.33% of slice registers, 26.14% of slice LUTs, and a modest portion of
on-chip memory resources (8.26% of 36 Kb RAMs and 2.11% of 18 Kb RAMs). The mini-
mum clock period achieved is 3.68 ns, corresponding to a maximum operating frequency
of 271.74 MHz. These utilization rates demonstrate that the system can be seamlessly inte-
grated as a pre- or post-processing module within larger heterogeneous vision pipelines
without exceeding typical mid-range FPGA resource budgets.

The maximum processing throughput, expressed in frames per second (fps), can be
estimated as

FPS =
fmax

(H + BV)(W + BH)
, (21)

where fmax is the maximum frequency and {H, W} are the frame height and width;
{BV , BH} represent vertical and horizontal blanking intervals, respectively. The proposed
system is designed to operate with the minimum blanking intervals, BV = BH = 1; thus,
substituting the measured fmax into Equation (21) yields the performance for different
video resolutions, as summarized in Table 4.

The proposed system achieves 130.86 fps for Full HD (1920× 1080) input and 73.63 fps
for Quad HD (2560 × 1440). Even at ultra-high definitions such as UW4K and DCI 4K,
real-time performance is maintained with 44.19 fps and 30.69 fps, respectively. These frame
rates far exceed the standard 30 fps real-time threshold, confirming the capability of the
system to handle high-resolution and low-latency imaging tasks efficiently.

Table 4. Maximum processing speeds in frames per second for different video standards. The #
symbol denotes quantities.

Standard Resolution Required Clock Cycles (#) Processing Speed (fps)

Full HD 1920 × 1080 2,076,601 130.86
Quad HD 2560 × 1440 3,690,401 73.63

4K
UW4K 3840 × 1600 6,149,441 44.19

UHD TV 3840 × 2160 8,300,401 32.74
DCI 4K 4096 × 2160 8,853,617 30.69

The hardware comparison results in Table 5 show clear advantages of the proposed
system over three representative real-time FPGA implementations: DCP with Fast Airlight
Estimation (DCP-FAE [26]), Fusion-Based Dehazing (FBD [17]), and Saturation-Based
Dehazing (SBD [29]). The maximum video resolution reported in the table refers to the
highest input resolution each accelerator can sustain at more than 30 fps.

SBD achieves the smallest resource usage but only because its algorithmic design is
extremely simple. It estimates airlight from a downsampled version of the input—where
the downsampling itself is performed externally—and does not include any meaning-
ful dehazing beyond this operation. Thus, SBD prioritizes speed and minimal resource
consumption at the cost of restoration quality.

FBD, on the other hand, illustrates a suboptimal hardware design. It implements image
filters using shift registers instead of line memories, leading to excessive logic utilization
and a fixed-resolution architecture restricted to 480 × 270. Because every resolution change
requires re-synthesis, FBD is impractical for real-world deployment.
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DCP-FAE is more capable than SBD and FBD, but it remains tied to the DCP, which
degrades severely in scenes with large sky regions or bright objects. It also requires more
on-chip memory than the proposed system, despite offering lower resolution support.

In contrast, the proposed system delivers the highest throughput with balanced re-
source usage and is the only design capable of real-time autonomous dehazing at full DCI-
4K (4096 × 2160) resolution. Unlike previous FPGA accelerators—primarily fixed-heuristic,
prior-based systems operating at SVGA or FHD resolutions—the proposed architecture
uniquely integrates haze-density estimation, adaptive fusion, and self-calibrating tone con-
trol into a fully hardware-friendly pipeline. This combination enables true self-adaptation
to varying haze levels without manual tuning or physical-model assumptions.

Collectively, these results demonstrate that the proposed design establishes a new
performance and capability benchmark among FPGA-based dehazing systems, combining
algorithmic autonomy, high-resolution scalability, and efficient hardware utilization.

Table 5. Comparison with other real-time dehazing implementations. The # symbol denotes quantities
and NA stands for not available.

Hardware Utilization DCP-FAE [26] FBD [17] SBD [29] Proposed System

Slice registers (#) 53,400 12,210 547 53,901
Slice LUTs (#) 64,000 79,042 1537 57,146

DSPs (#) 42 69 NA 0
Memory (Mbits) 3.20 NA NA 1.41

Maximum frequency (MHz) 88.70 108.45 85.20 271.74
Maximum video resolution SVGA 480 × 270 FHD DCI 4K

Autonomous dehazing Unequipped Unequipped Unequipped Equipped

5. Conclusions
This paper introduced a fast, model-free dehazing framework that departs from

traditional transmission estimation and physical-model inversion. The core novelty lies
in its haze-density-driven design: a referenceless haze-density estimator provides both
local and global guidance for fusion and tone remapping, enabling autonomous adaptation
across haze-free, mildly hazy, and densely hazy scenes. Unlike prior fusion-based methods
that rely on fixed heuristics, the proposed pipeline incorporates spatially continuous haze-
density maps, multi-variant exposure synthesis, and self-calibrated tone control, forming a
principled and fully data-independent strategy for robust restoration.

On the hardware side, the paper presented a deeply pipelined, resource-efficient
accelerator tailored to the structure of the proposed algorithm. Key architectural inno-
vations include the monotonicity-based optimization that reduces minimum-filter usage,
temporally scheduled interpolation to eliminate bottlenecks, and fixed-point datapaths
tuned for ±1 LSB accuracy. Implemented on a Xilinx XC7Z-045FFG900-2 device, the system
achieves one-pixel-per-clock processing, a maximum operating frequency of 271.74 MHz,
and real-time 30.69 fps throughput at DCI-4K resolution, demonstrating that the algorithm–
hardware co-design successfully combines adaptability with high-resolution performance.

Overall, the proposed system delivers a novel and practical dehazing solution by uni-
fying referenceless haze assessment, lightweight model-free fusion, and scalable hardware
realization. These characteristics make it well suited for embedded vision, autonomous
platforms, and aerial imaging. Future work will explore temporal consistency model-
ing and extended color-restoration modules to further enhance stability in continuous
video operation.
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Appendix A
Two-dimensional filtering operations are realized through a combination of line mem-

ories, register chains, and dedicated logic circuits, each customized according to the specific
filter kernel. The structural concept is depicted in Figure A1.
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Figure A1. Simplified datapath of 3 × 3 two-dimensional filters. REG is an abbreviation for register.

In this design, line memories are mapped to on-chip block RAMs on the FPGA, where
each memory introduces a one-line vertical delay equal to the image width. Hence, the set
of line memories provides vertical pixel buffering, while horizontal delays are achieved
through cascaded registers, each introducing a one-pixel shift along the image row.

For example, the 3 × 3 filter shown in Figure A1 employs two line memories and six
registers, allowing simultaneous access to nine pixels {z1, z2, . . . , z9} within the current
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filter window. These stored pixels are then routed to the filter operation block, which
performs kernel-specific arithmetic on the buffered data to produce the corresponding
output sample.

The logic circuit responsible for filtering is specialized based on the kernel type.
Figure A1 illustrates two representative cases:
• The moving-average filter corresponding to the kernel U in Equation (4), and
• The Laplacian filter corresponding to ∇2 in Equation (2).
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